update SDR print functions to use iterator primitives

This commit is contained in:
Duncan Laurie 2003-12-17 23:50:15 +00:00
parent ceaa360249
commit 18a1ff5e60

View File

@ -154,368 +154,229 @@ ipmi_sdr_get_header(struct ipmi_intf * intf, unsigned short reserve_id, unsigned
return &sdr_rs;
}
static struct sdr_record_compact_sensor *
ipmi_sdr_get_entry_02(struct ipmi_intf * intf, unsigned short reserve_id, unsigned short record_id, int len)
struct sdr_get_rs *
ipmi_sdr_get_next_header(struct ipmi_intf * intf, struct ipmi_sdr_iterator * itr)
{
struct ipmi_rq req;
struct ipmi_rs * rsp;
struct sdr_get_rq sdr_rq;
struct sdr_record_compact_sensor * sensor;
unsigned char data[256];
int i;
struct sdr_get_rs *header;
memset(&sdr_rq, 0, sizeof(sdr_rq));
sdr_rq.reserve_id = reserve_id;
sdr_rq.id = record_id;
sdr_rq.offset = 0;
if (itr->next >= itr->total)
return NULL;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR;
req.msg.data = (unsigned char *)&sdr_rq;
req.msg.data_len = sizeof(sdr_rq);
if (!(header = ipmi_sdr_get_header(intf, itr->reservation, itr->next)))
return NULL;
/* read SDR record with partial (30 byte) reads
* because a full read (0xff) exceeds the maximum
* transport buffer size. (completion code 0xca)
*/
memset(data, 0, sizeof(data));
for (i=0; i<len; i+=GET_SDR_MAX_LEN) {
sdr_rq.length = (len-i < GET_SDR_MAX_LEN) ? len-i : GET_SDR_MAX_LEN;
sdr_rq.offset = i+5; /* 5 header bytes */
if (verbose > 1)
printf("getting %d bytes from SDR at offset %d\n",
sdr_rq.length, sdr_rq.offset);
rsp = intf->sendrecv(intf, &req);
if (rsp && rsp->data)
memcpy(data+i, rsp->data+2, sdr_rq.length);
}
itr->next = header->next;
sensor = malloc(sizeof(*sensor));
memcpy(sensor, data, sizeof(*sensor));
if (verbose > 1) {
printbuf(data, len, "SDR Entry");
printf("keys.owner_id: 0x%x\n", sensor->keys.owner_id);
printf("keys.lun: 0x%x\n", sensor->keys.lun);
printf("keys.channel: 0x%x\n", sensor->keys.channel);
printf("keys.sensor_num: 0x%x\n", sensor->keys.sensor_num);
printf("entity: %d.%d\n", sensor->entity.id, sensor->entity.instance);
printf("entity.id: %s\n", val2str(sensor->entity.id, entity_id_vals));
printf("entity.instance: %d\n", sensor->entity.instance);
printf("entity.logical: %d\n", sensor->entity.logical);
printf("sensor unit.pct: 0x%x\n", sensor->unit.pct);
printf("sensor unit.rate: 0x%x\n", sensor->unit.rate);
printf("sensor unit.analog: 0x%x\n", sensor->unit.analog);
printf("sensor unit.modifier: 0x%x\n", sensor->unit.modifier);
printf("sensor unit.type.base: 0x%x\n", sensor->unit.type.base);
printf("sensor unit.type.modifier: 0x%x\n", sensor->unit.type.modifier);
printf("sensor.type: 0x%02x\n", sensor->sensor.type);
printf("event_type: 0x%02x\n", sensor->event_type);
printf("sensor id code: 0x%x\n", sensor->id_code);
if (sensor->id_code)
printf("sensor id: %s\n", sensor->id_string);
}
return sensor;
}
static struct sdr_record_full_sensor *
ipmi_sdr_get_entry_01(struct ipmi_intf * intf, unsigned short reserve_id, unsigned short record_id, int len)
{
struct ipmi_rq req;
struct ipmi_rs * rsp;
struct sdr_get_rq sdr_rq;
struct sdr_record_full_sensor * sensor;
unsigned char data[256];
int i;
memset(&sdr_rq, 0, sizeof(sdr_rq));
sdr_rq.reserve_id = reserve_id;
sdr_rq.id = record_id;
sdr_rq.offset = 0;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR;
req.msg.data = (unsigned char *)&sdr_rq;
req.msg.data_len = sizeof(sdr_rq);
/* read SDR record with partial (30 byte) reads
* because a full read (0xff) exceeds the maximum
* transport buffer size. (completion code 0xca)
*/
memset(data, 0, sizeof(data));
for (i=0; i<len; i+=GET_SDR_MAX_LEN) {
sdr_rq.length = (len-i < GET_SDR_MAX_LEN) ? len-i : GET_SDR_MAX_LEN;
sdr_rq.offset = i+5; /* 5 header bytes */
if (verbose > 1)
printf("getting %d bytes from SDR at offset %d\n",
sdr_rq.length, sdr_rq.offset);
rsp = intf->sendrecv(intf, &req);
if (rsp && rsp->data)
memcpy(data+i, rsp->data+2, sdr_rq.length);
}
sensor = malloc(sizeof(*sensor));
memcpy(sensor, data, sizeof(*sensor));
if (verbose > 1) {
printbuf(data, len, "SDR Entry");
printf("keys.owner_id: 0x%x\n", sensor->keys.owner_id);
printf("keys.lun: 0x%x\n", sensor->keys.lun);
printf("keys.channel: 0x%x\n", sensor->keys.channel);
printf("keys.sensor_num: 0x%x\n", sensor->keys.sensor_num);
printf("entity: %d.%d\n", sensor->entity.id, sensor->entity.instance);
printf("entity.id: %s\n", val2str(sensor->entity.id, entity_id_vals));
printf("entity.instance: %d\n", sensor->entity.instance);
printf("entity.logical: %d\n", sensor->entity.logical);
printf("sensor unit.pct: 0x%x\n", sensor->unit.pct);
printf("sensor unit.rate: 0x%x\n", sensor->unit.rate);
printf("sensor unit.analog: 0x%x\n", sensor->unit.analog);
printf("sensor unit.modifier: 0x%x\n", sensor->unit.modifier);
printf("sensor unit.type.base: 0x%x\n", sensor->unit.type.base);
printf("sensor unit.type.modifier: 0x%x\n", sensor->unit.type.modifier);
printf("sensor linearization: 0x%x\n", sensor->linearization);
printf("sensor tolerance: 0x%x\n", __TO_TOL(sensor->mtol));
printf("sensor M: 0x%x\n", __TO_M(sensor->mtol));
printf("sensor B: 0x%x\n", __TO_B(sensor->bacc));
printf("sensor B exp: %d\n", __TO_B_EXP(sensor->bacc));
printf("sensor R exp: %d\n", __TO_R_EXP(sensor->bacc));
printf("sensor accuracy: 0x%x\n", __TO_ACC(sensor->bacc));
printf("sensor accuracy exp: 0x%x\n", __TO_ACC_EXP(sensor->bacc));
printf("sensor.type: 0x%02x\n", sensor->sensor.type);
printf("event_type: 0x%02x\n", sensor->event_type);
printf("sensor min=0x%x max=0x%x\n", sensor->sensor_min, sensor->sensor_max);
printf("sensor id code: 0x%x\n", sensor->id_code);
printf("Nominal Reading : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->nominal_read));
printf("Normal Minimum Reading : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->normal_min));
printf("Normal Maximum Reading : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->normal_max));
printf("Upper non-recoverable Threshold : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.non_recover));
printf("Upper critical Threshold : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.critical));
printf("Upper non-critical Threshold : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.non_critical));
printf("Lower non-recoverable Threshold : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.non_recover));
printf("Lower critical Threshold : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.critical));
printf("Lower non-critical Threshold : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.non_critical));
if (sensor->id_code)
printf("sensor id: %s\n", sensor->id_string);
}
return sensor;
return header;
}
static void
ipmi_sdr_print_sensors(struct ipmi_intf * intf, int do_unit)
ipmi_sdr_print_sensor_compact(struct ipmi_intf * intf,
struct sdr_record_compact_sensor * sensor)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct sdr_repo_info_rs sdr_info;
struct sdr_reserve_repo_rs sdr_reserve;
struct sdr_get_rs * header;
struct sdr_record_full_sensor * sensor;
int next = 0, i = 0, total, validread;
unsigned short reservation;
float val;
char sval[16], unitstr[16];
char desc[17];
if (verbose)
if (!sensor)
return;
memset(desc, 0, sizeof(desc));
memcpy(desc, sensor->id_string, 16);
if (verbose) {
printf("Sensor ID : %s (0x%x)\n",
sensor->id_code ? desc : NULL, sensor->keys.sensor_num);
printf("Entity ID : %d.%d (%s)\n",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals));
if (verbose > 1) {
printf("sensor unit.pct: 0x%x\n", sensor->unit.pct);
printf("sensor unit.rate: 0x%x\n", sensor->unit.rate);
printf("sensor unit.analog: 0x%x\n", sensor->unit.analog);
printf("sensor unit.modifier: 0x%x\n", sensor->unit.modifier);
printf("sensor unit.type.base: 0x%x\n", sensor->unit.type.base);
printf("sensor unit.type.modifier: 0x%x\n", sensor->unit.type.modifier);
printf("sensor.type: 0x%02x\n", sensor->sensor.type);
printf("event_type: 0x%02x\n", sensor->event_type);
}
printf("\n");
}
}
static void
ipmi_sdr_print_sensor_full(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
{
char sval[16], unitstr[16], desc[17];
int i=0, validread=1, do_unit=1;
float val;
struct ipmi_rs * rsp;
if (!sensor)
return;
/* only handle linear sensors (for now) */
if (sensor->linearization) {
printf("non-linear!\n");
return;
}
memset(desc, 0, sizeof(desc));
memcpy(desc, sensor->id_string, 16);
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp || rsp->ccode) {
if (rsp && rsp->ccode == 0xcb) {
/* sensor not found */
val = 0.0;
validread = 0;
} else {
printf("Error reading sensor: %s\n",
val2str(rsp->ccode, completion_code_vals));
return;
}
} else {
/* convert RAW reading into units */
val = rsp->data[0] ? sdr_convert_sensor_reading(sensor, rsp->data[0]) : 0;
}
if (do_unit && validread) {
memset(unitstr, 0, sizeof(unitstr));
/* determine units with possible modifiers */
switch (sensor->unit.modifier) {
case 2:
i += snprintf(unitstr, sizeof(unitstr), "%s * %s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 1:
i += snprintf(unitstr, sizeof(unitstr), "%s/%s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 0:
default:
i += snprintf(unitstr, sizeof(unitstr), "%s",
unit_desc[sensor->unit.type.base]);
break;
}
}
if (!verbose) {
/*
* print sensor name, reading, state
*/
if (csv_output)
printf("%s,",
sensor->id_code ? desc : NULL);
else
printf("%-16s | ",
sensor->id_code ? desc : NULL);
memset(sval, 0, sizeof(sval));
if (validread) {
i += snprintf(sval, sizeof(sval), "%.*f",
(val==(int)val) ? 0 : 3, val);
} else {
i += snprintf(sval, sizeof(sval), "no reading");
i--;
}
printf("%s", sval);
if (csv_output)
printf(",");
if (validread) {
if (!csv_output)
printf(" ");
if (do_unit)
printf("%s", unitstr);
}
if (csv_output)
printf(",");
else {
for (; i<sizeof(sval); i++)
printf(" ");
printf(" | ");
}
printf("%s", ipmi_sdr_get_status(rsp->data[2]));
printf("\n");
}
else {
printf("Sensor ID : %s (0x%x)\n",
sensor->id_code ? desc : NULL, sensor->keys.sensor_num);
printf("Entity ID : %d.%d (%s)\n",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals));
printf("Sensor Reading : ");
if (validread)
printf("%.*f %s\n", (val==(int)val) ? 0 : 3, val, unitstr);
else
printf("not present\n");
printf("Status : %s\n",
ipmi_sdr_get_status(rsp->data[2]));
printf("Nominal Reading : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->nominal_read));
printf("Normal Minimum : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->normal_min));
printf("Normal Maximum : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->normal_max));
printf("Upper non-recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.non_recover));
printf("Upper critical : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.critical));
printf("Upper non-critical : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.non_critical));
printf("Lower non-recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.non_recover));
printf("Lower critical : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.critical));
printf("Lower non-critical : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.non_critical));
printf("\n");
}
}
static void
ipmi_sdr_print_sensors(struct ipmi_intf * intf)
{
struct sdr_get_rs * header;
struct ipmi_sdr_iterator * itr;
if (verbose > 1)
printf("Querying SDR for sensor list\n");
/* get sdr repository info */
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR_REPO_INFO;
rsp = intf->sendrecv(intf, &req);
if (!rsp || !rsp->data_len)
return;
memcpy(&sdr_info, rsp->data, sizeof(sdr_info));
/* byte 1 is SDR version, should be 51h */
if (sdr_info.version != 0x51) {
printf("SDR repository version mismatch!\n");
itr = ipmi_sdr_start(intf);
if (!itr) {
printf("Unable to open SDR for reading\n");
return;
}
total = sdr_info.count;
if (verbose > 1) {
printf("SDR free space: %d\n", sdr_info.free);
printf("SDR records: %d\n", total);
}
/* obtain reservation ID */
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR_RESERVE_REPO;
rsp = intf->sendrecv(intf, &req);
if (!rsp || !rsp->data_len)
return;
memcpy(&sdr_reserve, rsp->data, sizeof(sdr_reserve));
reservation = sdr_reserve.reserve_id;
if (verbose > 1)
printf("SDR reserveration ID %04x\n", reservation);
while (next < total) {
validread = 1;
i = 0;
header = ipmi_sdr_get_header(intf, reservation, next);
if (!header)
while (header = ipmi_sdr_get_next_header(intf, itr)) {
unsigned char * rec = ipmi_sdr_get_record(intf, header, itr);
if (!rec)
continue;
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
ipmi_sdr_print_sensor_full(intf,
(struct sdr_record_full_sensor *) rec);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
ipmi_sdr_print_sensor_compact(intf,
(struct sdr_record_compact_sensor *) rec);
break;
if (header->type == SDR_RECORD_TYPE_COMPACT_SENSOR) {
struct sdr_record_compact_sensor * s;
s = ipmi_sdr_get_entry_02(intf, reservation, next, header->length);
next = header->next;
free(s);
continue;
}
if (header->type != SDR_RECORD_TYPE_FULL_SENSOR) {
if (verbose > 1)
printf("Invalid SDR type 0x%02x\n", header->type);
next = header->next;
continue;
}
sensor = ipmi_sdr_get_entry_01(intf, reservation, next, header->length);
next = header->next;
/* only handle linear sensors (for now) */
if (sensor->linearization) {
printf("non-linear!\n");
continue;
}
memset(desc, 0, sizeof(desc));
memcpy(desc, sensor->id_string, 16);
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp || rsp->ccode) {
if (rsp && rsp->ccode == 0xcb) {
/* sensor not found */
val = 0.0;
validread = 0;
} else {
printf("Error reading sensor: %s\n",
val2str(rsp->ccode, completion_code_vals));
continue;
}
} else {
/* convert RAW reading into units */
val = rsp->data[0] ? sdr_convert_sensor_reading(sensor, rsp->data[0]) : 0;
}
if (do_unit && validread) {
memset(unitstr, 0, sizeof(unitstr));
/* determine units with possible modifiers */
switch (sensor->unit.modifier) {
case 2:
i += snprintf(unitstr, sizeof(unitstr), "%s * %s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 1:
i += snprintf(unitstr, sizeof(unitstr), "%s/%s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 0:
default:
i += snprintf(unitstr, sizeof(unitstr), "%s",
unit_desc[sensor->unit.type.base]);
break;
}
}
if (!verbose) {
/*
* print sensor name, reading, state
*/
if (csv_output)
printf("%s,",
sensor->id_code ? desc : NULL);
else
printf("%-16s | ",
sensor->id_code ? desc : NULL);
memset(sval, 0, sizeof(sval));
if (validread) {
i += snprintf(sval, sizeof(sval), "%.*f",
(val==(int)val) ? 0 : 3, val);
} else {
i += snprintf(sval, sizeof(sval), "no reading");
i--;
}
printf("%s", sval);
if (csv_output)
printf(",");
if (validread) {
if (!csv_output)
printf(" ");
if (do_unit)
printf("%s", unitstr);
}
if (csv_output)
printf(",");
else {
for (; i<sizeof(sval); i++)
printf(" ");
printf(" | ");
}
printf("%s", ipmi_sdr_get_status(rsp->data[2]));
printf("\n");
}
else {
printf("Sensor | %s (0x%x)\n",
sensor->id_code ? desc : NULL,
sensor->keys.sensor_num);
printf("Entity | %d.%d (%s)\n",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals));
if (validread)
printf("Reading | %.*f %s\n",
(val==(int)val) ? 0 : 3, val, unitstr);
else
printf("Reading | not present\n");
printf("Status | %s\n",
ipmi_sdr_get_status(rsp->data[2]));
printf("\n");
}
free(sensor);
free(rec);
}
ipmi_sdr_end(intf, itr);
}
struct ipmi_sdr_iterator *
@ -576,35 +437,19 @@ ipmi_sdr_start(struct ipmi_intf * intf)
return itr;
}
struct sdr_get_rs *
ipmi_sdr_get_next_header(struct ipmi_intf * intf, struct ipmi_sdr_iterator * itr)
{
struct sdr_get_rs *header;
if (itr->next >= itr->total)
return NULL;
if (!(header = ipmi_sdr_get_header(intf, itr->reservation, itr->next)))
return NULL;
itr->next = header->next;
return (header);
}
unsigned char *
ipmi_sdr_get_record(struct ipmi_intf * intf, struct sdr_get_rs * header, struct ipmi_sdr_iterator * itr)
ipmi_sdr_get_record(struct ipmi_intf * intf, struct sdr_get_rs * header,
struct ipmi_sdr_iterator * itr)
{
struct ipmi_rq req;
struct ipmi_rs * rsp;
struct sdr_get_rq sdr_rq;
struct sdr_record_compact_sensor * sensor;
unsigned char * data;
int i, len;
int i, len = header->length;
if (!(data = malloc (header->length)))
if (!(data = malloc(len+1)))
return NULL;
memset(data, 0, len+1);
memset(&sdr_rq, 0, sizeof(sdr_rq));
sdr_rq.reserve_id = itr->reservation;
@ -617,13 +462,10 @@ ipmi_sdr_get_record(struct ipmi_intf * intf, struct sdr_get_rs * header, struct
req.msg.data = (unsigned char *)&sdr_rq;
req.msg.data_len = sizeof(sdr_rq);
len = header->length;
/* read SDR record with partial (30 byte) reads
* because a full read (0xff) exceeds the maximum
* transport buffer size. (completion code 0xca)
*/
memset(data, 0, sizeof(data));
for (i=0; i<len; i+=GET_SDR_MAX_LEN) {
sdr_rq.length = (len-i < GET_SDR_MAX_LEN) ? len-i : GET_SDR_MAX_LEN;
sdr_rq.offset = i+5; /* 5 header bytes */
@ -647,11 +489,11 @@ ipmi_sdr_end(struct ipmi_intf * intf, struct ipmi_sdr_iterator * itr)
int ipmi_sdr_main(struct ipmi_intf * intf, int argc, char ** argv)
{
if (!argc)
ipmi_sdr_print_sensors(intf, 1);
ipmi_sdr_print_sensors(intf);
else if (!strncmp(argv[0], "help", 4))
printf("SDR Commands: list\n");
else if (!strncmp(argv[0], "list", 4))
ipmi_sdr_print_sensors(intf, 1);
ipmi_sdr_print_sensors(intf);
else
printf("Invalid SDR command: %s\n", argv[0]);
return 0;