add sensor list, get/set threshold commands

This commit is contained in:
Jon Cassorla 2004-02-05 01:10:25 +00:00
parent 569b8bf5d7
commit 1e1058db49
4 changed files with 710 additions and 75 deletions

View File

@ -627,7 +627,10 @@ void ipmi_sdr_end(struct ipmi_intf * intf, struct ipmi_sdr_iterator * i);
void ipmi_sdr_print_sdr(struct ipmi_intf * intf, unsigned char type);
const char * ipmi_sdr_get_status(unsigned char stat);
float sdr_convert_sensor_reading(struct sdr_record_full_sensor * sensor, unsigned char val);
unsigned char sdr_convert_sensor_value_to_raw(struct sdr_record_full_sensor * sensor, float val);
struct ipmi_rs * ipmi_sdr_get_sensor_reading(struct ipmi_intf * intf, unsigned char sensor);
const char * ipmi_sdr_get_sensor_type_desc(const unsigned char type);
struct sdr_record_full_sensor * ipmi_sdr_find_sdr(struct ipmi_intf * intf, char * id);
#endif /* IPMI_SDR_H */

View File

@ -41,11 +41,52 @@
#include <ipmitool/bswap.h>
#include <ipmitool/ipmi.h>
/* ipmi sensor commands */
#define GET_SENSOR_READING 0x2d
#define GET_SENSOR_FACTORS 0x23
#define GET_SENSOR_THRES 0x27
#define SET_SENSOR_THRESHOLDS 0x26
#define GET_SENSOR_THRESHOLDS 0x27
#define GET_SENSOR_TYPE 0x2f
/* threshold specification bits for analog sensors for get sensor threshold command
* and set sensor threshold command
*/
#define UPPER_NON_RECOV_SPECIFIED 0x20
#define UPPER_CRIT_SPECIFIED 0x10
#define UPPER_NON_CRIT_SPECIFIED 0x08
#define LOWER_NON_RECOV_SPECIFIED 0x04
#define LOWER_CRIT_SPECIFIED 0x02
#define LOWER_NON_CRIT_SPECIFIED 0x01
/* state assertion bits for discrete sensors for get sensor reading command */
#define STATE_0_ASSERTED 0x01
#define STATE_1_ASSERTED 0x02
#define STATE_2_ASSERTED 0x04
#define STATE_3_ASSERTED 0x08
#define STATE_4_ASSERTED 0x10
#define STATE_5_ASSERTED 0x20
#define STATE_6_ASSERTED 0x40
#define STATE_7_ASSERTED 0x80
#define STATE_8_ASSERTED 0x01
#define STATE_9_ASSERTED 0x02
#define STATE_10_ASSERTED 0x04
#define STATE_11_ASSERTED 0x08
#define STATE_12_ASSERTED 0x10
#define STATE_13_ASSERTED 0x20
#define STATE_14_ASSERTED 0x40
struct sensor_set_thresh_rq {
unsigned char sensor_num; /* sensor # */
unsigned char set_mask; /* threshold setting mask */
unsigned char lower_non_crit; /* new lower non critical threshold*/
unsigned char lower_crit; /* new lower critical threshold*/
unsigned char lower_non_recov; /* new lower non recoverable threshold*/
unsigned char upper_non_crit; /* new upper non critical threshold*/
unsigned char upper_crit; /* new upper critical threshold*/
unsigned char upper_non_recov; /* new upper non recoverable threshold*/
} __attribute__ ((packed));
int ipmi_sensor_main(struct ipmi_intf *, int, char **);
#endif /* IPMI_SENSOR_H */

View File

@ -84,6 +84,29 @@ sdr_convert_sensor_reading(struct sdr_record_full_sensor * sensor, unsigned char
}
}
unsigned char
sdr_convert_sensor_value_to_raw(struct sdr_record_full_sensor * sensor, float val)
{
int m, b, k1, k2;
double result;
m = __TO_M(sensor->mtol);
b = __TO_B(sensor->bacc);
k1 = __TO_B_EXP(sensor->bacc);
k2 = __TO_R_EXP(sensor->bacc);
if (sensor->unit.analog > 2) /* This isn't an analog sensor. */
return 0;
if (m == 0) /* don't divide by zero */
return 0;
result = ((val / pow(10, k2)) - (b * pow(10, k1))) / m;
if ((result -(int)result) >= .5)
return (unsigned char)ceil(result);
else
return (unsigned char)result;
}
#define READING_UNAVAILABLE 0x20
#define SCANNING_DISABLED 0x80
@ -109,7 +132,7 @@ ipmi_sdr_get_sensor_reading(struct ipmi_intf * intf, unsigned char sensor)
return rsp;
}
static const char *
const char *
ipmi_sdr_get_sensor_type_desc(const unsigned char type)
{
if (type <= SENSOR_TYPE_MAX)
@ -191,7 +214,7 @@ ipmi_sdr_get_next_header(struct ipmi_intf * intf, struct ipmi_sdr_iterator * itr
{
struct sdr_get_rs *header;
if (itr->next > itr->total)
if (itr->next == 0xffff)
return NULL;
if (!(header = ipmi_sdr_get_header(intf, itr->reservation, itr->next)))
@ -932,6 +955,31 @@ ipmi_sdr_end(struct ipmi_intf * intf, struct ipmi_sdr_iterator * itr)
free (itr);
}
struct sdr_record_full_sensor *
ipmi_sdr_find_sdr(struct ipmi_intf * intf, char * id)
{
struct sdr_get_rs * header;
struct ipmi_sdr_iterator * itr;
itr = ipmi_sdr_start(intf);
if (!itr)
{
printf("Unable to open SDR for reading\n");
return;
}
while (header = ipmi_sdr_get_next_header(intf, itr))
{
struct sdr_record_full_sensor * sdr;
if (header->type != SDR_RECORD_TYPE_FULL_SENSOR)
continue;
sdr = (struct sdr_record_full_sensor *)ipmi_sdr_get_record(intf, header, itr);
if (sdr && !strncmp(sdr->id_string, id, sdr->id_code & 0x3f))
return sdr;
}
return NULL;
}
int ipmi_sdr_main(struct ipmi_intf * intf, int argc, char ** argv)
{
if (!argc)

View File

@ -44,98 +44,638 @@
extern int verbose;
#define READING_UNAVAILABLE 0x20
#define SCANNING_DISABLED 0x80
static void
ipmi_get_sensor_info_compact(struct ipmi_intf * intf,
struct sdr_record_compact_sensor * sensor)
static
struct ipmi_rs *
ipmi_sensor_get_sensor_thresholds(struct ipmi_intf * intf, unsigned char sensor)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = GET_SENSOR_THRESHOLDS;
req.msg.data = &sensor;
req.msg.data_len = sizeof(sensor);
rsp = intf->sendrecv(intf, &req);
return rsp;
}
static
struct ipmi_rs *
ipmi_sensor_set_sensor_thresholds(struct ipmi_intf * intf,
unsigned char sensor,
unsigned char threshold,
unsigned char setting)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
static struct sensor_set_thresh_rq set_thresh_rq;
memset(&set_thresh_rq, 0, sizeof(set_thresh_rq));
set_thresh_rq.sensor_num = sensor;
set_thresh_rq.set_mask = threshold;
if (threshold == UPPER_NON_RECOV_SPECIFIED)
set_thresh_rq.upper_non_recov = setting;
else if (threshold == UPPER_CRIT_SPECIFIED)
set_thresh_rq.upper_crit = setting;
else if (threshold == UPPER_NON_CRIT_SPECIFIED)
set_thresh_rq.upper_non_crit = setting;
else if (threshold == LOWER_NON_CRIT_SPECIFIED)
set_thresh_rq.lower_non_crit = setting;
else if (threshold == LOWER_CRIT_SPECIFIED)
set_thresh_rq.lower_crit = setting;
else if (threshold == LOWER_NON_RECOV_SPECIFIED)
set_thresh_rq.lower_non_recov = setting;
else
return NULL;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = SET_SENSOR_THRESHOLDS;
req.msg.data = (unsigned char *)&set_thresh_rq;
req.msg.data_len = sizeof(set_thresh_rq);
rsp = intf->sendrecv(intf, &req);
return rsp;
}
static void
ipmi_get_sensor_info_full(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
{
char id[17];
char * unitstr = "discrete";
int i=0, validread=1;
unsigned char val;
struct ipmi_rs * rsp;
char sval[16], unitstr[16], desc[17];
float val, tol;
unsigned raw_tol;
int i=0, not_available=0;
char * status;
memset(desc, 0, sizeof(desc));
memcpy(desc, sensor->id_string, 16);
if (!sensor)
return;
memset(id, 0, sizeof(id));
memcpy(id, sensor->id_string, 16);
/*
* Get current reading
*/
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if ((rsp && (rsp->data[1] & READING_UNAVAILABLE)) ||
(rsp && !(rsp->data[1] & SCANNING_DISABLED)))
not_available = 1;
else {
memset(unitstr, 0, sizeof(unitstr));
/* determine units with possible modifiers */
switch (sensor->unit.modifier) {
case 2:
i += snprintf(unitstr, sizeof(unitstr), "%s * %s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 1:
i += snprintf(unitstr, sizeof(unitstr), "%s/%s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 0:
default:
i += snprintf(unitstr, sizeof(unitstr), "%s",
unit_desc[sensor->unit.type.base]);
break;
}
val = sdr_convert_sensor_reading(sensor, rsp->data[0]);
raw_tol = (sensor->mtol & 0x3f00) >> 8;
tol = sdr_convert_sensor_reading(sensor, raw_tol * 2);
if (!rsp)
{
printf("Error reading sensor %s (#%02x)\n", id, sensor->keys.sensor_num);
return;
}
else if (rsp->ccode || (rsp->data[1] & READING_UNAVAILABLE))
{
validread = 0;
}
else
{
/* convert RAW reading into units */
val = rsp->data[0];
}
if (!verbose) {
/*
* print sensor name, reading, state
*/
printf("%-16s | ", sensor->id_code ? desc : NULL);
if (csv_output)
{
}
else
{
if (!verbose)
{
/* output format
* id value units status thresholds....
*/
printf("%-16s ", id);
if (validread)
{
printf("| 0x%-8x | %-10s | 0x%02x%02x",
val,
unitstr,
rsp->data[2],
rsp->data[3]);
}
else
{
printf("| %-10s | %-10s | %-6s",
"na",
unitstr,
"na");
}
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
i = 0;
memset(sval, 0, sizeof(sval));
if (not_available) {
i += snprintf(sval, sizeof(sval), "no reading ");
} else {
i += snprintf(sval, sizeof(sval), "%.*f %s", (val==(int)val) ? 0 : 3, val, unitstr);
printf("\n");
}
printf("%s", sval);
i--;
for (; i<sizeof(sval); i++)
printf(" ");
printf(" | ");
printf("%s", ipmi_sdr_get_status(rsp->data[2]));
printf("\n");
} else {
printf("Sensor ID : %s (0x%x)\n", desc, sensor->keys.sensor_num);
if (not_available)
printf("Sensor Reading : Unavailable");
else
printf("Sensor Reading : %.*f (+/- %.*f) %s\n",
(val==(int)val) ? 0 : 3,
val,
(tol==(int)tol) ? 0 : 3,
tol,
unitstr);
printf("\n");
{
printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num);
printf("Sensor Type (Discrete) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf("Sensor Reading : ");
if (validread)
{
printf("0x%x\n", val);
}
else
{
printf("not present\n\n");
return;
}
printf("States Asserted : ");
if (!rsp->data[2] && !rsp->data[3])
printf("none");
else
{
if (rsp->data[2] & STATE_0_ASSERTED)
printf("%d ", 0);
if (rsp->data[2] & STATE_1_ASSERTED)
printf("%d ", 1);
if (rsp->data[2] & STATE_2_ASSERTED)
printf("%d ", 2);
if (rsp->data[2] & STATE_3_ASSERTED)
printf("%d ", 3);
if (rsp->data[2] & STATE_4_ASSERTED)
printf("%d ", 4);
if (rsp->data[2] & STATE_5_ASSERTED)
printf("%d ", 5);
if (rsp->data[2] & STATE_6_ASSERTED)
printf("%d ", 6);
if (rsp->data[2] & STATE_7_ASSERTED)
printf("%d ", 7);
if (rsp->data[3] & STATE_8_ASSERTED)
printf("%d ", 8);
if (rsp->data[3] & STATE_9_ASSERTED)
printf("%d ", 9);
if (rsp->data[3] & STATE_10_ASSERTED)
printf("%d ", 10);
if (rsp->data[3] & STATE_11_ASSERTED)
printf("%d ", 11);
if (rsp->data[3] & STATE_12_ASSERTED)
printf("%d ", 12);
if (rsp->data[3] & STATE_13_ASSERTED)
printf("%d ", 13);
if (rsp->data[3] & STATE_14_ASSERTED)
printf("%d ", 14);
}
printf("\n\n");
}
}
}
static void
ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
{
char unitstr[16], id[17];
int i=0, validread=1, thresh_available = 1;
float val;
struct ipmi_rs * rsp;
char * status;
if (!sensor)
return;
/* only handle linear sensors (for now) */
if (sensor->linearization) {
printf("non-linear!\n");
return;
}
memset(id, 0, sizeof(id));
memcpy(id, sensor->id_string, 16);
/*
* Get current reading
*/
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp)
{
printf("Error reading sensor %s (#%02x)\n", id, sensor->keys.sensor_num);
return;
}
else if (rsp->ccode || (rsp->data[1] & READING_UNAVAILABLE))
{
validread = 0;
}
else
{
/* convert RAW reading into units */
val = rsp->data[0] ? sdr_convert_sensor_reading(sensor, rsp->data[0]) : 0;
status = (char*)ipmi_sdr_get_status(rsp->data[2]);
}
/*
* Figure out units
*/
memset(unitstr, 0, sizeof(unitstr));
switch (sensor->unit.modifier)
{
case 2:
i += snprintf(unitstr, sizeof(unitstr), "%s * %s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 1:
i += snprintf(unitstr, sizeof(unitstr), "%s/%s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 0:
default:
i += snprintf(unitstr, sizeof(unitstr), "%s",
unit_desc[sensor->unit.type.base]);
break;
}
/*
* Get sensor thresholds
*/
rsp = ipmi_sensor_get_sensor_thresholds(intf, sensor->keys.sensor_num);
if (!rsp)
thresh_available = 0;
if (csv_output)
{
}
else
{
if (!verbose)
{
/* output format
* id value units status thresholds....
*/
printf("%-16s ", id);
if (validread)
{
printf("| %-10.3f | %-10s | %-6s",
val,
unitstr,
status);
}
else
{
printf("| %-11s | %-10s | %-6s",
"na",
unitstr,
"na");
}
if (thresh_available)
{
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[3]));
else
printf("| %-10s", "na");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[2]));
else
printf("| %-10s", "na");
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[1]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[4]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[5]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[6]));
else
printf("| %-10s", "na");
}
else
{
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
}
printf("\n");
}
else
{
printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num);
printf("Sensor Type (Analog) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf("Sensor Reading : ");
if (validread) {
#if WORDS_BIGENDIAN
unsigned raw_tol = sensor->mtol & 0x3f;
#else
unsigned raw_tol = (sensor->mtol & 0x3f00) >> 8;
#endif
float tol = sdr_convert_sensor_reading(sensor, raw_tol * 2);
printf("%.*f (+/- %.*f) %s\n",
(val==(int)val) ? 0 : 3,
val,
(tol==(int)tol) ? 0 : 3,
tol,
unitstr);
printf("Status : %s\n", status);
if (thresh_available)
{
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)
printf("Lower Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[3]));
else
printf("Lower Non-Recoverable : na\n");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf("Lower Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[2]));
else
printf("Lower Critical : na\n");
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)
printf("Lower Non-Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[1]));
else
printf("Lower Non-Critical : na\n");
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)
printf("Upper Non-Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[4]));
else
printf("Upper Non-Critical : na\n");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf("Upper Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[5]));
else
printf("Upper Critical : na\n");
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)
printf("Upper Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[6]));
else
printf("Upper Non-Recoverable : na\n");
}
} else
printf("not present\n");
printf("\n");
}
}
}
static void
ipmi_sensor_print_full(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
{
if (sensor->unit.analog != 3)
ipmi_sensor_print_full_analog(intf, sensor);
else
ipmi_sensor_print_full_discrete(intf, sensor);
}
static void
ipmi_sensor_print_compact(struct ipmi_intf * intf,
struct sdr_record_compact_sensor * sensor)
{
char id[17];
char * unitstr = "discrete";
int i=0, validread=1;
unsigned char val;
struct ipmi_rs * rsp;
char * status;
if (!sensor)
return;
memset(id, 0, sizeof(id));
memcpy(id, sensor->id_string, 16);
/*
* Get current reading
*/
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp)
{
printf("Error reading sensor %s (#%02x)\n", id, sensor->keys.sensor_num);
return;
}
else if (rsp->ccode || (rsp->data[1] & READING_UNAVAILABLE))
{
validread = 0;
}
else
{
/* convert RAW reading into units */
val = rsp->data[0];
}
if (csv_output)
{
}
else
{
if (!verbose)
{
/* output format
* id value units status thresholds....
*/
printf("%-16s ", id);
if (validread)
{
printf("| 0x%-8x | %-10s | 0x%02x%02x",
val,
unitstr,
rsp->data[2],
rsp->data[3]);
}
else
{
printf("| %-10s | %-10s | %-6s",
"na",
unitstr,
"na");
}
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
printf("\n");
}
else
{
printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num);
printf("Sensor Type (Discrete) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf("Sensor Reading : ");
if (validread)
{
printf("0x%04x\n", val);
}
else
{
printf("not present\n\n");
return;
}
printf("States Asserted : ");
if (!rsp->data[2] && !rsp->data[3])
printf("none");
else
{
if (rsp->data[2] & STATE_0_ASSERTED)
printf("%d ", 0);
if (rsp->data[2] & STATE_1_ASSERTED)
printf("%d ", 1);
if (rsp->data[2] & STATE_2_ASSERTED)
printf("%d ", 2);
if (rsp->data[2] & STATE_3_ASSERTED)
printf("%d ", 3);
if (rsp->data[2] & STATE_4_ASSERTED)
printf("%d ", 4);
if (rsp->data[2] & STATE_5_ASSERTED)
printf("%d ", 5);
if (rsp->data[2] & STATE_6_ASSERTED)
printf("%d ", 6);
if (rsp->data[2] & STATE_7_ASSERTED)
printf("%d ", 7);
if (rsp->data[3] & STATE_8_ASSERTED)
printf("%d ", 8);
if (rsp->data[3] & STATE_9_ASSERTED)
printf("%d ", 9);
if (rsp->data[3] & STATE_10_ASSERTED)
printf("%d ", 10);
if (rsp->data[3] & STATE_11_ASSERTED)
printf("%d ", 11);
if (rsp->data[3] & STATE_12_ASSERTED)
printf("%d ", 12);
if (rsp->data[3] & STATE_13_ASSERTED)
printf("%d ", 13);
if (rsp->data[3] & STATE_14_ASSERTED)
printf("%d ", 14);
}
printf("\n\n");
}
}
}
static void
ipmi_sensor_list(struct ipmi_intf * intf)
{
ipmi_sdr_print_sdr(intf, 0xff);
struct sdr_get_rs * header;
struct ipmi_sdr_iterator * itr;
if (verbose > 1)
printf("Querying SDR for sensor list\n");
itr = ipmi_sdr_start(intf);
if (!itr)
{
printf("Unable to open SDRR for reading\n");
return;
}
while (header = ipmi_sdr_get_next_header(intf, itr))
{
unsigned char * rec = ipmi_sdr_get_record(intf, header, itr);
if (!rec)
continue;
switch(header->type)
{
case SDR_RECORD_TYPE_FULL_SENSOR:
ipmi_sensor_print_full(intf, (struct sdr_record_full_sensor *) rec);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
ipmi_sensor_print_compact(intf, (struct sdr_record_compact_sensor *) rec);
break;
default:
continue;
break;
}
}
}
static void
ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
{
char * id,
* thresh;
unsigned char settingMask;
float setting;
struct sdr_record_full_sensor * sdr;
struct ipmi_rs * rsp;
if (argc < 3 || !strncmp(argv[0], "help", 4))
{
printf("sensor thresh <id> <threshold> <setting>\n");
printf(" id : name of the sensor for which threshold is to be set\n");
printf(" threshold : which threshold to set\n");
printf(" unr = upper non-recoverable\n");
printf(" ucr = upper critical\n");
printf(" unc = upper non-critical\n");
printf(" lnc = lower non-critical\n");
printf(" lcr = lower critical\n");
printf(" lnr = lower non-recoverable\n");
printf(" setting : the value to set the threshold to\n");
return;
}
id = argv[0];
thresh = argv[1];
setting = (float)atof(argv[2]);
if (!strcmp(thresh, "unr"))
{
settingMask = UPPER_NON_RECOV_SPECIFIED;
}
else if (!strcmp(thresh, "ucr"))
{
settingMask = UPPER_CRIT_SPECIFIED;
}
else if (!strcmp(thresh, "unc"))
{
settingMask = UPPER_NON_CRIT_SPECIFIED;
}
else if (!strcmp(thresh, "lnc"))
{
settingMask = LOWER_NON_CRIT_SPECIFIED;
}
else if (!strcmp(thresh, "lcr"))
{
settingMask = LOWER_CRIT_SPECIFIED;
}
else if (!strcmp(thresh, "lnr"))
{
settingMask = LOWER_NON_RECOV_SPECIFIED;
}
else
{
printf("Valid threshold not specified!\n");
return;
}
sdr = ipmi_sdr_find_sdr(intf, id);
if (sdr)
{
rsp = ipmi_sensor_set_sensor_thresholds(intf,
sdr->keys.sensor_num,
settingMask,
sdr_convert_sensor_value_to_raw(sdr, setting));
if (rsp && rsp->ccode)
printf("Error setting threshold: 0x%x\n", rsp->ccode);
}
else
{
printf("Sensor data record not found!\n");
return;
}
}
int
@ -144,11 +684,14 @@ ipmi_sensor_main(struct ipmi_intf * intf, int argc, char ** argv)
if (!argc)
ipmi_sensor_list(intf);
else if (!strncmp(argv[0], "help", 4)) {
printf("Sensor Commands: list\n");
printf("Sensor Commands: list thresh\n");
}
else if (!strncmp(argv[0], "list", 4)) {
ipmi_sensor_list(intf);
}
else if (!strncmp(argv[0], "thresh", 5)) {
ipmi_sensor_set_threshold(intf, argc-1, &argv[1]);
}
else
printf("Invalid sensor command: %s\n", argv[0]);
return 0;