sensor: Refactor ipmi_sensor_print_fc_threshold()

Break the function into smaller pieces to reduce
complexity.
This commit is contained in:
eyjhbb@gmail.com 2018-09-24 15:41:00 +02:00 committed by Alexander Amelkin
parent 9d49a6edfe
commit 6f336d04f1

View File

@ -260,6 +260,184 @@ print_thresh_setting(struct sdr_record_full_sensor *full,
}
}
static void
dump_sensor_fc_thredshold_csv(
int thresh_available,
const char *thresh_status,
struct ipmi_rs *rsp,
struct sensor_reading *sr)
{
printf("%s", sr->s_id);
if (sr->s_reading_valid) {
if (sr->s_has_analog_value)
printf(",%.3f,%s,%s",
sr->s_a_val, sr->s_a_units, thresh_status);
else
printf(",0x%x,%s,%s",
sr->s_reading, sr->s_a_units, thresh_status);
} else {
printf(",%s,%s,%s",
"na", sr->s_a_units, "na");
}
if (thresh_available && sr->full) {
#define PTS(bit, dataidx) { \
print_thresh_setting(sr->full, rsp->data[0] & (bit), \
rsp->data[(dataidx)], ",", "%.3f", "0x%x", "%s"); \
}
PTS(LOWER_NON_RECOV_SPECIFIED, 3);
PTS(LOWER_CRIT_SPECIFIED, 2);
PTS(LOWER_NON_CRIT_SPECIFIED, 1);
PTS(UPPER_NON_CRIT_SPECIFIED, 4);
PTS(UPPER_CRIT_SPECIFIED, 5);
PTS(UPPER_NON_RECOV_SPECIFIED, 6);
#undef PTS
} else {
printf(",%s,%s,%s,%s,%s,%s",
"na", "na", "na", "na", "na", "na");
}
printf("\n");
}
/* output format
* id value units status thresholds....
*/
static void
dump_sensor_fc_thredshold(
int thresh_available,
const char *thresh_status,
struct ipmi_rs *rsp,
struct sensor_reading *sr)
{
printf("%-16s ", sr->s_id);
if (sr->s_reading_valid) {
if (sr->s_has_analog_value)
printf("| %-10.3f | %-10s | %-6s",
sr->s_a_val, sr->s_a_units, thresh_status);
else
printf("| 0x%-8x | %-10s | %-6s",
sr->s_reading, sr->s_a_units, thresh_status);
} else {
printf("| %-10s | %-10s | %-6s",
"na", sr->s_a_units, "na");
}
if (thresh_available && sr->full) {
#define PTS(bit, dataidx) { \
print_thresh_setting(sr->full, rsp->data[0] & (bit), \
rsp->data[(dataidx)], "| ", "%-10.3f", "0x%-8x", "%-10s"); \
}
PTS(LOWER_NON_RECOV_SPECIFIED, 3);
PTS(LOWER_CRIT_SPECIFIED, 2);
PTS(LOWER_NON_CRIT_SPECIFIED, 1);
PTS(UPPER_NON_CRIT_SPECIFIED, 4);
PTS(UPPER_CRIT_SPECIFIED, 5);
PTS(UPPER_NON_RECOV_SPECIFIED, 6);
#undef PTS
} else {
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
}
printf("\n");
}
static void
dump_sensor_fc_thredshold_verbose(
int thresh_available,
const char *thresh_status,
struct ipmi_intf *intf,
struct sdr_record_common_sensor *sensor,
struct ipmi_rs *rsp,
struct sensor_reading *sr)
{
printf("Sensor ID : %s (0x%x)\n",
sr->s_id, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d\n",
sensor->entity.id, sensor->entity.instance);
printf(" Sensor Type (Threshold) : %s\n",
ipmi_get_sensor_type(intf, sensor->sensor.type));
printf(" Sensor Reading : ");
if (sr->s_reading_valid) {
if (sr->full) {
uint16_t raw_tol = __TO_TOL(sr->full->mtol);
if (sr->s_has_analog_value) {
double tol =
sdr_convert_sensor_tolerance(sr->full,
raw_tol);
printf("%.*f (+/- %.*f) %s\n",
(sr->s_a_val == (int)
sr->s_a_val) ? 0 : 3,
sr->s_a_val,
(tol == (int) tol) ? 0 : 3, tol,
sr->s_a_units);
} else {
printf("0x%x (+/- 0x%x) %s\n",
sr->s_reading,
raw_tol,
sr->s_a_units);
}
} else {
printf("0x%x %s\n",
sr->s_reading, sr->s_a_units);
}
printf(" Status : %s\n", thresh_status);
if (thresh_available) {
if (sr->full) {
#define PTS(bit, dataidx, str) { \
print_thresh_setting(sr->full, rsp->data[0] & (bit), \
rsp->data[(dataidx)], \
(str), "%.3f\n", "0x%x\n", "%s\n"); \
}
PTS(LOWER_NON_RECOV_SPECIFIED, 3, " Lower Non-Recoverable : ");
PTS(LOWER_CRIT_SPECIFIED, 2, " Lower Critical : ");
PTS(LOWER_NON_CRIT_SPECIFIED, 1, " Lower Non-Critical : ");
PTS(UPPER_NON_CRIT_SPECIFIED, 4, " Upper Non-Critical : ");
PTS(UPPER_CRIT_SPECIFIED, 5, " Upper Critical : ");
PTS(UPPER_NON_RECOV_SPECIFIED, 6, " Upper Non-Recoverable : ");
#undef PTS
}
ipmi_sdr_print_sensor_hysteresis(sensor, sr->full,
sr->full ? sr->full->threshold.hysteresis.positive :
sr->compact->threshold.hysteresis.positive,
"Positive Hysteresis");
ipmi_sdr_print_sensor_hysteresis(sensor, sr->full,
sr->full ? sr->full->threshold.hysteresis.negative :
sr->compact->threshold.hysteresis.negative,
"Negative Hysteresis");
} else {
printf(" Sensor Threshold Settings not available\n");
}
} else {
printf(" Unable to read sensor: Device Not Present\n\n");
}
ipmi_sdr_print_sensor_event_status(intf,
sensor->keys.
sensor_num,
sensor->sensor.type,
sensor->event_type,
ANALOG_SENSOR,
sensor->keys.owner_id,
sensor->keys.lun,
sensor->keys.channel);
ipmi_sdr_print_sensor_event_enable(intf,
sensor->keys.
sensor_num,
sensor->sensor.type,
sensor->event_type,
ANALOG_SENSOR,
sensor->keys.owner_id,
sensor->keys.lun,
sensor->keys.channel);
printf("\n");
}
static int
ipmi_sensor_print_fc_threshold(struct ipmi_intf *intf,
struct sdr_record_common_sensor *sensor,
@ -288,160 +466,13 @@ ipmi_sensor_print_fc_threshold(struct ipmi_intf *intf,
thresh_available = 0;
if (csv_output) {
printf("%s", sr->s_id);
if (sr->s_reading_valid) {
if (sr->s_has_analog_value)
printf(",%.3f,%s,%s",
sr->s_a_val, sr->s_a_units, thresh_status);
else
printf(",0x%x,%s,%s",
sr->s_reading, sr->s_a_units, thresh_status);
} else {
printf(",%s,%s,%s",
"na", sr->s_a_units, "na");
}
if (thresh_available && sr->full) {
#define PTS(bit, dataidx) { \
print_thresh_setting(sr->full, rsp->data[0] & (bit), \
rsp->data[(dataidx)], ",", "%.3f", "0x%x", "%s"); \
}
PTS(LOWER_NON_RECOV_SPECIFIED, 3);
PTS(LOWER_CRIT_SPECIFIED, 2);
PTS(LOWER_NON_CRIT_SPECIFIED, 1);
PTS(UPPER_NON_CRIT_SPECIFIED, 4);
PTS(UPPER_CRIT_SPECIFIED, 5);
PTS(UPPER_NON_RECOV_SPECIFIED, 6);
#undef PTS
} else {
printf(",%s,%s,%s,%s,%s,%s",
"na", "na", "na", "na", "na", "na");
}
printf("\n");
dump_sensor_fc_thredshold_csv(thresh_available, thresh_status, rsp, sr);
} else {
if (verbose == 0) {
/* output format
* id value units status thresholds....
*/
printf("%-16s ", sr->s_id);
if (sr->s_reading_valid) {
if (sr->s_has_analog_value)
printf("| %-10.3f | %-10s | %-6s",
sr->s_a_val, sr->s_a_units, thresh_status);
else
printf("| 0x%-8x | %-10s | %-6s",
sr->s_reading, sr->s_a_units, thresh_status);
} else {
printf("| %-10s | %-10s | %-6s",
"na", sr->s_a_units, "na");
}
if (thresh_available && sr->full) {
#define PTS(bit, dataidx) { \
print_thresh_setting(sr->full, rsp->data[0] & (bit), \
rsp->data[(dataidx)], "| ", "%-10.3f", "0x%-8x", "%-10s"); \
}
PTS(LOWER_NON_RECOV_SPECIFIED, 3);
PTS(LOWER_CRIT_SPECIFIED, 2);
PTS(LOWER_NON_CRIT_SPECIFIED, 1);
PTS(UPPER_NON_CRIT_SPECIFIED, 4);
PTS(UPPER_CRIT_SPECIFIED, 5);
PTS(UPPER_NON_RECOV_SPECIFIED, 6);
#undef PTS
} else {
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
}
printf("\n");
dump_sensor_fc_thredshold(thresh_available, thresh_status, rsp, sr);
} else {
printf("Sensor ID : %s (0x%x)\n",
sr->s_id, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d\n",
sensor->entity.id, sensor->entity.instance);
printf(" Sensor Type (Threshold) : %s\n",
ipmi_get_sensor_type(intf, sensor->sensor.
type));
printf(" Sensor Reading : ");
if (sr->s_reading_valid) {
if (sr->full) {
uint16_t raw_tol = __TO_TOL(sr->full->mtol);
if (sr->s_has_analog_value) {
double tol =
sdr_convert_sensor_tolerance(sr->full,
raw_tol);
printf("%.*f (+/- %.*f) %s\n",
(sr->s_a_val == (int)
sr->s_a_val) ? 0 : 3,
sr->s_a_val,
(tol == (int) tol) ? 0 : 3, tol,
sr->s_a_units);
} else {
printf("0x%x (+/- 0x%x) %s\n",
sr->s_reading,
raw_tol,
sr->s_a_units);
}
} else {
printf("0x%x %s\n", sr->s_reading,
sr->s_a_units);
}
printf(" Status : %s\n", thresh_status);
if (thresh_available) {
if (sr->full) {
#define PTS(bit, dataidx, str) { \
print_thresh_setting(sr->full, rsp->data[0] & (bit), \
rsp->data[(dataidx)], \
(str), "%.3f\n", "0x%x\n", "%s\n"); \
}
PTS(LOWER_NON_RECOV_SPECIFIED, 3, " Lower Non-Recoverable : ");
PTS(LOWER_CRIT_SPECIFIED, 2, " Lower Critical : ");
PTS(LOWER_NON_CRIT_SPECIFIED, 1, " Lower Non-Critical : ");
PTS(UPPER_NON_CRIT_SPECIFIED, 4, " Upper Non-Critical : ");
PTS(UPPER_CRIT_SPECIFIED, 5, " Upper Critical : ");
PTS(UPPER_NON_RECOV_SPECIFIED, 6, " Upper Non-Recoverable : ");
#undef PTS
}
ipmi_sdr_print_sensor_hysteresis(sensor, sr->full,
sr->full ? sr->full->threshold.hysteresis.positive :
sr->compact->threshold.hysteresis.positive,
"Positive Hysteresis");
ipmi_sdr_print_sensor_hysteresis(sensor, sr->full,
sr->full ? sr->full->threshold.hysteresis.negative :
sr->compact->threshold.hysteresis.negative,
"Negative Hysteresis");
} else {
printf(" Sensor Threshold Settings not available\n");
}
} else {
printf(" Unable to read sensor: Device Not Present\n\n");
}
ipmi_sdr_print_sensor_event_status(intf,
sensor->keys.
sensor_num,
sensor->sensor.type,
sensor->event_type,
ANALOG_SENSOR,
sensor->keys.owner_id,
sensor->keys.lun,
sensor->keys.channel);
ipmi_sdr_print_sensor_event_enable(intf,
sensor->keys.
sensor_num,
sensor->sensor.type,
sensor->event_type,
ANALOG_SENSOR,
sensor->keys.owner_id,
sensor->keys.lun,
sensor->keys.channel);
printf("\n");
dump_sensor_fc_thredshold_verbose(thresh_available, thresh_status,
intf, sensor, rsp, sr);
}
}