added support for built-in sdrs

This commit is contained in:
Francois Isabelle 2005-07-12 12:21:13 +00:00
parent 4d2f9ebdc2
commit 96876bb061
3 changed files with 1723 additions and 1456 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -51,17 +51,16 @@ extern int verbose;
static
struct ipmi_rs *
ipmi_sensor_set_sensor_thresholds(struct ipmi_intf * intf,
uint8_t sensor,
uint8_t threshold,
uint8_t setting)
ipmi_sensor_set_sensor_thresholds(struct ipmi_intf *intf,
uint8_t sensor,
uint8_t threshold, uint8_t setting)
{
struct ipmi_rq req;
static struct sensor_set_thresh_rq set_thresh_rq;
memset(&set_thresh_rq, 0, sizeof(set_thresh_rq));
memset(&set_thresh_rq, 0, sizeof (set_thresh_rq));
set_thresh_rq.sensor_num = sensor;
set_thresh_rq.set_mask = threshold;
set_thresh_rq.set_mask = threshold;
if (threshold == UPPER_NON_RECOV_SPECIFIED)
set_thresh_rq.upper_non_recov = setting;
else if (threshold == UPPER_CRIT_SPECIFIED)
@ -77,37 +76,37 @@ ipmi_sensor_set_sensor_thresholds(struct ipmi_intf * intf,
else
return NULL;
memset(&req, 0, sizeof(req));
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = SET_SENSOR_THRESHOLDS;
req.msg.data = (uint8_t *)&set_thresh_rq;
req.msg.data_len = sizeof(set_thresh_rq);
req.msg.data = (uint8_t *) & set_thresh_rq;
req.msg.data_len = sizeof (set_thresh_rq);
return intf->sendrecv(intf, &req);
}
static int
ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
ipmi_sensor_print_full_discrete(struct ipmi_intf *intf,
struct sdr_record_full_sensor *sensor)
{
char id[17];
char * unitstr = "discrete";
int validread=1;
char *unitstr = "discrete";
int validread = 1;
uint8_t val = 0;
struct ipmi_rs * rsp;
struct ipmi_rs *rsp;
if (sensor == NULL)
return -1;
memset(id, 0, sizeof(id));
memset(id, 0, sizeof (id));
memcpy(id, sensor->id_string, 16);
/*
* Get current reading
*/
rsp = ipmi_sdr_get_sensor_reading_ipmb(intf,
sensor->keys.sensor_num,
sensor->keys.owner_id);
sensor->keys.sensor_num,
sensor->keys.owner_id);
if (rsp == NULL) {
lprintf(LOG_ERR, "Error reading sensor %s (#%02x)",
id, sensor->keys.sensor_num);
@ -119,12 +118,9 @@ ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
val = rsp->data[0];
}
if (csv_output)
{
if (csv_output) {
/* NOT IMPLEMENTED */
}
else
{
} else {
if (verbose == 0) {
/* output format
* id value units status thresholds....
@ -133,16 +129,12 @@ ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
if (validread) {
printf("| 0x%-8x | %-10s | 0x%02x%02x",
val,
unitstr,
rsp->data[2],
rsp->data[3]);
unitstr, rsp->data[2], rsp->data[3]);
} else {
printf("| %-10s | %-10s | %-6s",
"na",
unitstr,
"na");
"na", unitstr, "na");
}
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
printf("\n");
@ -151,8 +143,9 @@ ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
id, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d\n",
sensor->entity.id, sensor->entity.instance);
printf(" Sensor Type (Discrete): %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf(" Sensor Type (Discrete): %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.
type));
ipmi_sdr_print_discrete_state("States Asserted",
sensor->sensor.type,
sensor->event_type,
@ -166,23 +159,23 @@ ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
}
static int
ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
ipmi_sensor_print_full_analog(struct ipmi_intf *intf,
struct sdr_record_full_sensor *sensor)
{
char unitstr[16], id[17];
int i=0, validread=1, thresh_available = 1;
int i = 0, validread = 1, thresh_available = 1;
double val = 0.0;
struct ipmi_rs * rsp;
char * status = NULL;
struct ipmi_rs *rsp;
char *status = NULL;
if (sensor == NULL)
return -1;
memset(id, 0, sizeof(id));
memset(id, 0, sizeof (id));
memcpy(id, sensor->id_string, 16);
/* only handle linear and linearized sensors (for now) */
if (sensor->linearization>=SDR_SENSOR_L_NONLINEAR) {
if (sensor->linearization >= SDR_SENSOR_L_NONLINEAR) {
printf("sensor %s non-linear!\n", id);
return -1;
}
@ -202,30 +195,29 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
} else {
/* convert RAW reading into units */
val = (rsp->data[0] > 0)
? sdr_convert_sensor_reading(sensor, rsp->data[0])
: 0;
status = (char*)ipmi_sdr_get_status(sensor, rsp->data[2]);
? sdr_convert_sensor_reading(sensor, rsp->data[0])
: 0;
status = (char *) ipmi_sdr_get_status(sensor, rsp->data[2]);
}
/*
* Figure out units
*/
memset(unitstr, 0, sizeof(unitstr));
switch (sensor->unit.modifier)
{
case 2:
i += snprintf(unitstr, sizeof(unitstr), "%s * %s",
memset(unitstr, 0, sizeof (unitstr));
switch (sensor->unit.modifier) {
case 2:
i += snprintf(unitstr, sizeof (unitstr), "%s * %s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 1:
i += snprintf(unitstr, sizeof(unitstr), "%s/%s",
case 1:
i += snprintf(unitstr, sizeof (unitstr), "%s/%s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 0:
default:
i += snprintf(unitstr, sizeof(unitstr), "%s",
case 0:
default:
i += snprintf(unitstr, sizeof (unitstr), "%s",
unit_desc[sensor->unit.type.base]);
break;
}
@ -237,14 +229,10 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
if (rsp == NULL)
thresh_available = 0;
if (csv_output)
{
if (csv_output) {
/* NOT IPMLEMENTED */
}
else
{
if (verbose == 0)
{
} else {
if (verbose == 0) {
/* output format
* id value units status thresholds....
*/
@ -256,110 +244,141 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
printf("| %-10s | %-10s | %-6s",
"na", unitstr, "na");
}
if (thresh_available)
{
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[3]));
if (thresh_available) {
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)
printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[3]));
else
printf("| %-10s", "na");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[2]));
if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[2]));
else
printf("| %-10s", "na");
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[1]));
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)
printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[1]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[4]));
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)
printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[4]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[5]));
if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[5]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[6]));
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)
printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[6]));
else
printf("| %-10s", "na");
}
else
{
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
} else {
printf
("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
}
printf("\n");
}
else
{
} else {
printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d\n",
sensor->entity.id, sensor->entity.instance);
printf(" Sensor Type (Analog) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf(" Sensor Type (Analog) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.
type));
printf(" Sensor Reading : ");
if (validread) {
uint16_t raw_tol = __TO_TOL(sensor->mtol);
double tol = sdr_convert_sensor_reading(sensor, raw_tol * 2);
double tol =
sdr_convert_sensor_reading(sensor,
raw_tol * 2);
printf("%.*f (+/- %.*f) %s\n",
(val==(int)val) ? 0 : 3,
val,
(tol==(int)tol) ? 0 : 3,
tol,
(val == (int) val) ? 0 : 3, val,
(tol == (int) tol) ? 0 : 3, tol,
unitstr);
printf(" Status : %s\n", status ? : "");
printf(" Status : %s\n",
status ? : "");
if (thresh_available)
{
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)
printf(" Lower Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[3]));
if (thresh_available) {
if (rsp->
data[0] & LOWER_NON_RECOV_SPECIFIED)
printf
(" Lower Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[3]));
else
printf(" Lower Non-Recoverable : na\n");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf(" Lower Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[2]));
printf
(" Lower Non-Recoverable : na\n");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf
(" Lower Critical : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[2]));
else
printf(" Lower Critical : na\n");
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)
printf(" Lower Non-Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[1]));
printf
(" Lower Critical : na\n");
if (rsp->
data[0] & LOWER_NON_CRIT_SPECIFIED)
printf
(" Lower Non-Critical : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[1]));
else
printf(" Lower Non-Critical : na\n");
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)
printf(" Upper Non-Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[4]));
printf
(" Lower Non-Critical : na\n");
if (rsp->
data[0] & UPPER_NON_CRIT_SPECIFIED)
printf
(" Upper Non-Critical : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[4]));
else
printf(" Upper Non-Critical : na\n");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf(" Upper Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[5]));
printf
(" Upper Non-Critical : na\n");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf
(" Upper Critical : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[5]));
else
printf(" Upper Critical : na\n");
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)
printf(" Upper Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[6]));
printf
(" Upper Critical : na\n");
if (rsp->
data[0] & UPPER_NON_RECOV_SPECIFIED)
printf
(" Upper Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[6]));
else
printf(" Upper Non-Recoverable : na\n");
printf
(" Upper Non-Recoverable : na\n");
}
}
else
{
} else {
printf("Not Present\n");
}
ipmi_sdr_print_sensor_event_status(intf,
sensor->keys.sensor_num,
sensor->keys.
sensor_num,
sensor->sensor.type,
sensor->event_type,
ANALOG_SENSOR);
ipmi_sdr_print_sensor_event_enable(intf,
sensor->keys.sensor_num,
sensor->keys.
sensor_num,
sensor->sensor.type,
sensor->event_type,
ANALOG_SENSOR);
@ -372,8 +391,8 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
}
int
ipmi_sensor_print_full(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
ipmi_sensor_print_full(struct ipmi_intf *intf,
struct sdr_record_full_sensor *sensor)
{
if (sensor->unit.analog != 3)
return ipmi_sensor_print_full_analog(intf, sensor);
@ -382,19 +401,19 @@ ipmi_sensor_print_full(struct ipmi_intf * intf,
}
int
ipmi_sensor_print_compact(struct ipmi_intf * intf,
struct sdr_record_compact_sensor * sensor)
ipmi_sensor_print_compact(struct ipmi_intf *intf,
struct sdr_record_compact_sensor *sensor)
{
char id[17];
char * unitstr = "discrete";
char *unitstr = "discrete";
int validread = 1;
uint8_t val = 0;
struct ipmi_rs * rsp;
struct ipmi_rs *rsp;
if (sensor == NULL)
return -1;
memset(id, 0, sizeof(id));
memset(id, 0, sizeof (id));
memcpy(id, sensor->id_string, 16);
/*
@ -414,14 +433,10 @@ ipmi_sensor_print_compact(struct ipmi_intf * intf,
val = rsp->data[0];
}
if (csv_output)
{
if (csv_output) {
/* NOT IMPLEMENTED */
}
else
{
if (!verbose)
{
} else {
if (!verbose) {
/* output format
* id value units status thresholds....
*/
@ -436,20 +451,22 @@ ipmi_sensor_print_compact(struct ipmi_intf * intf,
"na", unitstr, "na");
}
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
printf("\n");
}
else
{
} else {
printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d\n",
sensor->entity.id, sensor->entity.instance);
printf(" Sensor Type (Discrete): %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
ipmi_sdr_print_discrete_state("States Asserted", sensor->sensor.type,
sensor->event_type, rsp->data[2], rsp->data[3]);
printf(" Sensor Type (Discrete): %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.
type));
ipmi_sdr_print_discrete_state("States Asserted",
sensor->sensor.type,
sensor->event_type,
rsp->data[2],
rsp->data[3]);
printf("\n");
}
}
@ -458,10 +475,10 @@ ipmi_sensor_print_compact(struct ipmi_intf * intf,
}
static int
ipmi_sensor_list(struct ipmi_intf * intf)
ipmi_sensor_list(struct ipmi_intf *intf)
{
struct sdr_get_rs * header;
struct ipmi_sdr_iterator * itr;
struct sdr_get_rs *header;
struct ipmi_sdr_iterator *itr;
int rc = 0;
lprintf(LOG_DEBUG, "Querying SDR for sensor list");
@ -472,30 +489,34 @@ ipmi_sensor_list(struct ipmi_intf * intf)
return -1;
}
while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL)
{
while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL) {
int r = 0;
uint8_t * rec;
uint8_t *rec;
rec = ipmi_sdr_get_record(intf, header, itr);
if (rec == NULL)
if (rec == NULL) {
lprintf(LOG_DEBUG, "rec == NULL");
continue;
}
switch(header->type)
{
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
r = ipmi_sensor_print_full(intf,
(struct sdr_record_full_sensor *)rec);
(struct
sdr_record_full_sensor *)
rec);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
r = ipmi_sensor_print_compact(intf,
(struct sdr_record_compact_sensor *)rec);
(struct
sdr_record_compact_sensor
*) rec);
break;
}
free(rec);
/* save any errors */
rc = (r == 0) ? rc : r;
rc = (r == 0) ? rc : r;
}
ipmi_sdr_end(intf, itr);
@ -504,21 +525,20 @@ ipmi_sensor_list(struct ipmi_intf * intf)
}
static const struct valstr threshold_vals[] = {
{ UPPER_NON_RECOV_SPECIFIED, "Upper Non-Recoverable" },
{ UPPER_CRIT_SPECIFIED, "Upper Critical" },
{ UPPER_NON_CRIT_SPECIFIED, "Upper Non-Critical" },
{ LOWER_NON_RECOV_SPECIFIED, "Lower Non-Recoverable" },
{ LOWER_CRIT_SPECIFIED, "Lower Critical" },
{ LOWER_NON_CRIT_SPECIFIED, "Lower Non-Critical" },
{ 0x00, NULL },
{UPPER_NON_RECOV_SPECIFIED, "Upper Non-Recoverable"},
{UPPER_CRIT_SPECIFIED, "Upper Critical"},
{UPPER_NON_CRIT_SPECIFIED, "Upper Non-Critical"},
{LOWER_NON_RECOV_SPECIFIED, "Lower Non-Recoverable"},
{LOWER_CRIT_SPECIFIED, "Lower Critical"},
{LOWER_NON_CRIT_SPECIFIED, "Lower Non-Critical"},
{0x00, NULL},
};
static int
__ipmi_sensor_set_threshold(struct ipmi_intf * intf,
__ipmi_sensor_set_threshold(struct ipmi_intf *intf,
uint8_t num, uint8_t mask, uint8_t setting)
{
struct ipmi_rs * rsp;
struct ipmi_rs *rsp;
rsp = ipmi_sensor_set_sensor_thresholds(intf, num, mask, setting);
@ -535,36 +555,44 @@ __ipmi_sensor_set_threshold(struct ipmi_intf * intf,
return 0;
}
static int
ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
ipmi_sensor_set_threshold(struct ipmi_intf *intf, int argc, char **argv)
{
char * id, * thresh;
char *id, *thresh;
uint8_t settingMask = 0;
double setting1 = 0.0, setting2 = 0.0, setting3 = 0.0;
int allUpper = 0, allLower = 0;
int ret = 0;
struct sdr_record_list * sdr;
if (argc < 3 || strncmp(argv[0], "help", 4) == 0)
{
struct sdr_record_list *sdr;
if (argc < 3 || strncmp(argv[0], "help", 4) == 0) {
lprintf(LOG_NOTICE, "sensor thresh <id> <threshold> <setting>");
lprintf(LOG_NOTICE, " id : name of the sensor for which threshold is to be set");
lprintf(LOG_NOTICE,
" id : name of the sensor for which threshold is to be set");
lprintf(LOG_NOTICE, " threshold : which threshold to set");
lprintf(LOG_NOTICE, " unr = upper non-recoverable");
lprintf(LOG_NOTICE,
" unr = upper non-recoverable");
lprintf(LOG_NOTICE, " ucr = upper critical");
lprintf(LOG_NOTICE, " unc = upper non-critical");
lprintf(LOG_NOTICE, " lnc = lower non-critical");
lprintf(LOG_NOTICE,
" unc = upper non-critical");
lprintf(LOG_NOTICE,
" lnc = lower non-critical");
lprintf(LOG_NOTICE, " lcr = lower critical");
lprintf(LOG_NOTICE, " lnr = lower non-recoverable");
lprintf(LOG_NOTICE, " setting : the value to set the threshold to");
lprintf(LOG_NOTICE,
" lnr = lower non-recoverable");
lprintf(LOG_NOTICE,
" setting : the value to set the threshold to");
lprintf(LOG_NOTICE, "");
lprintf(LOG_NOTICE, "sensor thresh <id> lower <lnr> <lcr> <lnc>");
lprintf(LOG_NOTICE, " Set all lower thresholds at the same time");
lprintf(LOG_NOTICE,
"sensor thresh <id> lower <lnr> <lcr> <lnc>");
lprintf(LOG_NOTICE,
" Set all lower thresholds at the same time");
lprintf(LOG_NOTICE, "");
lprintf(LOG_NOTICE, "sensor thresh <id> upper <unc> <ucr> <unr>");
lprintf(LOG_NOTICE, " Set all upper thresholds at the same time");
lprintf(LOG_NOTICE,
"sensor thresh <id> upper <unc> <ucr> <unr>");
lprintf(LOG_NOTICE,
" Set all upper thresholds at the same time");
lprintf(LOG_NOTICE, "");
return 0;
}
@ -574,26 +602,26 @@ ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
if (strncmp(thresh, "upper", 5) == 0) {
if (argc < 5) {
lprintf(LOG_ERR, "usage: sensor thresh <id> upper <unc> <ucr> <unr>");
lprintf(LOG_ERR,
"usage: sensor thresh <id> upper <unc> <ucr> <unr>");
return -1;
}
allUpper = 1;
setting1 = (double)strtod(argv[2], NULL);
setting2 = (double)strtod(argv[3], NULL);
setting3 = (double)strtod(argv[4], NULL);
}
else if (strncmp(thresh, "lower", 5) == 0) {
setting1 = (double) strtod(argv[2], NULL);
setting2 = (double) strtod(argv[3], NULL);
setting3 = (double) strtod(argv[4], NULL);
} else if (strncmp(thresh, "lower", 5) == 0) {
if (argc < 5) {
lprintf(LOG_ERR, "usage: sensor thresh <id> lower <unc> <ucr> <unr>");
lprintf(LOG_ERR,
"usage: sensor thresh <id> lower <unc> <ucr> <unr>");
return -1;
}
allLower = 1;
setting1 = (double)strtod(argv[2], NULL);
setting2 = (double)strtod(argv[3], NULL);
setting3 = (double)strtod(argv[4], NULL);
}
else {
setting1 = (double)atof(argv[2]);
setting1 = (double) strtod(argv[2], NULL);
setting2 = (double) strtod(argv[3], NULL);
setting3 = (double) strtod(argv[4], NULL);
} else {
setting1 = (double) atof(argv[2]);
if (strncmp(thresh, "unr", 3) == 0)
settingMask = UPPER_NON_RECOV_SPECIFIED;
else if (strncmp(thresh, "ucr", 3) == 0)
@ -607,7 +635,9 @@ ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
else if (strncmp(thresh, "lnr", 3) == 0)
settingMask = LOWER_NON_RECOV_SPECIFIED;
else {
lprintf(LOG_ERR, "Valid threshold '%s' for sensor '%s' not specified!", thresh, id);
lprintf(LOG_ERR,
"Valid threshold '%s' for sensor '%s' not specified!",
thresh, id);
return -1;
}
}
@ -632,67 +662,79 @@ ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting1);
ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask,
sdr_convert_sensor_value_to_raw(sdr->record.full, setting1));
sdr->record.full->keys.
sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting1));
settingMask = UPPER_CRIT_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting2);
ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask,
sdr_convert_sensor_value_to_raw(sdr->record.full, setting2));
sdr->record.full->keys.
sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting2));
settingMask = UPPER_NON_RECOV_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting3);
ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask,
sdr_convert_sensor_value_to_raw(sdr->record.full, setting3));
}
else if (allLower) {
sdr->record.full->keys.
sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting3));
} else if (allLower) {
settingMask = LOWER_NON_RECOV_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting1);
ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask,
sdr_convert_sensor_value_to_raw(sdr->record.full, setting1));
sdr->record.full->keys.
sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting1));
settingMask = LOWER_CRIT_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting2);
ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask,
sdr_convert_sensor_value_to_raw(sdr->record.full, setting2));
sdr->record.full->keys.
sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting2));
settingMask = LOWER_NON_CRIT_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting3);
ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask,
sdr_convert_sensor_value_to_raw(sdr->record.full, setting3));
}
else {
sdr->record.full->keys.
sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting3));
} else {
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting1);
ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask,
sdr_convert_sensor_value_to_raw(sdr->record.full, setting1));
sdr->record.full->keys.
sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting1));
}
return ret;
}
static int
ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv)
ipmi_sensor_get(struct ipmi_intf *intf, int argc, char **argv)
{
struct sdr_record_list * sdr;
struct sdr_record_list *sdr;
int i, v;
int rc = 0;
@ -704,7 +746,7 @@ ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv)
printf("Locating sensor record...\n");
/* lookup by sensor name */
for (i=0; i<argc; i++) {
for (i = 0; i < argc; i++) {
int r = 0;
sdr = ipmi_sdr_find_sdr_byid(intf, argv[i]);
@ -723,16 +765,22 @@ ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv)
r = ipmi_sensor_print_full(intf, sdr->record.full);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
r = ipmi_sensor_print_compact(intf, sdr->record.compact);
r = ipmi_sensor_print_compact(intf,
sdr->record.compact);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
r = ipmi_sdr_print_sensor_eventonly(intf, sdr->record.eventonly);
r = ipmi_sdr_print_sensor_eventonly(intf,
sdr->record.
eventonly);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
r = ipmi_sdr_print_sensor_fru_locator(intf, sdr->record.fruloc);
r = ipmi_sdr_print_sensor_fru_locator(intf,
sdr->record.
fruloc);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
r = ipmi_sdr_print_sensor_mc_locator(intf, sdr->record.mcloc);
r = ipmi_sdr_print_sensor_mc_locator(intf,
sdr->record.mcloc);
break;
}
verbose = v;
@ -745,28 +793,22 @@ ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv)
}
int
ipmi_sensor_main(struct ipmi_intf * intf, int argc, char ** argv)
ipmi_sensor_main(struct ipmi_intf *intf, int argc, char **argv)
{
int rc = 0;
if (argc == 0) {
rc = ipmi_sensor_list(intf);
}
else if (strncmp(argv[0], "help", 4) == 0) {
} else if (strncmp(argv[0], "help", 4) == 0) {
lprintf(LOG_NOTICE, "Sensor Commands: list thresh get");
}
else if (strncmp(argv[0], "list", 4) == 0) {
} else if (strncmp(argv[0], "list", 4) == 0) {
rc = ipmi_sensor_list(intf);
}
else if (strncmp(argv[0], "thresh", 5) == 0) {
rc = ipmi_sensor_set_threshold(intf, argc-1, &argv[1]);
}
else if (strncmp(argv[0], "get", 3) == 0) {
rc = ipmi_sensor_get(intf, argc-1, &argv[1]);
}
else {
lprintf(LOG_ERR, "Invalid sensor command: %s",
argv[0]);
} else if (strncmp(argv[0], "thresh", 5) == 0) {
rc = ipmi_sensor_set_threshold(intf, argc - 1, &argv[1]);
} else if (strncmp(argv[0], "get", 3) == 0) {
rc = ipmi_sensor_get(intf, argc - 1, &argv[1]);
} else {
lprintf(LOG_ERR, "Invalid sensor command: %s", argv[0]);
rc = -1;
}