ipmitool/lib/ipmi_mc.c
Alexander Amelkin f033b5549e fru: Add decoder for multirec system mgmt records
* Add a decoder for System Management records in
  the Multirecord area
* Refactor GUID/UUID decoding: Use the same code for `mc guid`
  and for `fru print` to decode the GUID and System Unique ID
  in System Management records in the Multirecord Area.
* Fix some type errors in calls to printf/sprintf in GUID decoder

Signed-off-by: Alexander Amelkin <alexander@amelkin.msk.ru>
2022-12-06 02:48:52 +03:00

1630 lines
41 KiB
C

/*
* Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind.
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
* SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
* SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA,
* OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
* PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
* LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,
* EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <limits.h>
#include <stdbool.h>
#include <arpa/inet.h>
#include <ipmitool/helper.h>
#include <ipmitool/log.h>
#include <ipmitool/bswap.h>
#include <ipmitool/ipmi.h>
#include <ipmitool/ipmi_intf.h>
#include <ipmitool/ipmi_mc.h>
#include <ipmitool/ipmi_strings.h>
#include <ipmitool/ipmi_time.h>
extern int verbose;
static int ipmi_sysinfo_main(struct ipmi_intf *intf, int argc, char ** argv,
int is_set);
static void printf_sysinfo_usage(int full_help);
/* ipmi_mc_reset - attempt to reset an MC
*
* @intf: ipmi interface
* @cmd: reset command to send
* BMC_WARM_RESET or
* BMC_COLD_RESET
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_mc_reset(struct ipmi_intf * intf, int cmd)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
if( !intf->opened )
intf->open(intf);
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = cmd;
req.msg.data_len = 0;
if (cmd == BMC_COLD_RESET)
intf->noanswer = 1;
rsp = intf->sendrecv(intf, &req);
if (cmd == BMC_COLD_RESET)
intf->abort = 1;
if (cmd == BMC_COLD_RESET && !rsp) {
/* This is expected. See 20.2 Cold Reset Command, p.243, IPMIv2.0 rev1.0 */
} else if (!rsp) {
lprintf(LOG_ERR, "MC reset command failed.");
return (-1);
} else if (rsp->ccode) {
lprintf(LOG_ERR, "MC reset command failed: %s",
CC_STRING(rsp->ccode));
return (-1);
}
printf("Sent %s reset command to MC\n",
(cmd == BMC_WARM_RESET) ? "warm" : "cold");
return 0;
}
#ifdef HAVE_PRAGMA_PACK
#pragma pack(1)
#endif
struct bmc_enables_data {
#if WORDS_BIGENDIAN
uint8_t oem2 : 1;
uint8_t oem1 : 1;
uint8_t oem0 : 1;
uint8_t __reserved : 1;
uint8_t system_event_log : 1;
uint8_t event_msgbuf : 1;
uint8_t event_msgbuf_intr : 1;
uint8_t receive_msg_intr : 1;
#else
uint8_t receive_msg_intr : 1;
uint8_t event_msgbuf_intr : 1;
uint8_t event_msgbuf : 1;
uint8_t system_event_log : 1;
uint8_t __reserved : 1;
uint8_t oem0 : 1;
uint8_t oem1 : 1;
uint8_t oem2 : 1;
#endif
} ATTRIBUTE_PACKING;
#ifdef HAVE_PRAGMA_PACK
#pragma pack(0)
#endif
struct bitfield_data {
const char * name;
const char * desc;
uint32_t mask;
} mc_enables_bf[] = {
{
.name = "recv_msg_intr",
.desc = "Receive Message Queue Interrupt",
.mask = 1<<0,
},
{
.name = "event_msg_intr",
.desc = "Event Message Buffer Full Interrupt",
.mask = 1<<1,
},
{
.name = "event_msg",
.desc = "Event Message Buffer",
.mask = 1<<2,
},
{
.name = "system_event_log",
.desc = "System Event Logging",
.mask = 1<<3,
},
{
.name = "oem0",
.desc = "OEM 0",
.mask = 1<<5,
},
{
.name = "oem1",
.desc = "OEM 1",
.mask = 1<<6,
},
{
.name = "oem2",
.desc = "OEM 2",
.mask = 1<<7,
},
{ NULL },
};
static void
printf_mc_reset_usage(void)
{
lprintf(LOG_NOTICE, "usage: mc reset <warm|cold>");
} /* printf_mc_reset_usage(void) */
static void
printf_mc_usage(void)
{
struct bitfield_data * bf;
lprintf(LOG_NOTICE, "MC Commands:");
lprintf(LOG_NOTICE, " reset <warm|cold>");
lprintf(LOG_NOTICE, " guid [auto|smbios|ipmi|rfc4122|dump]");
lprintf(LOG_NOTICE, " info");
lprintf(LOG_NOTICE, " watchdog <get|reset|off>");
lprintf(LOG_NOTICE, " selftest");
lprintf(LOG_NOTICE, " getenables");
lprintf(LOG_NOTICE, " setenables <option=on|off> ...");
for (bf = mc_enables_bf; bf->name; bf++) {
lprintf(LOG_NOTICE, " %-20s %s", bf->name, bf->desc);
}
printf_sysinfo_usage(0);
}
static void
printf_sysinfo_usage(int full_help)
{
if (full_help != 0)
lprintf(LOG_NOTICE, "usage:");
lprintf(LOG_NOTICE, " getsysinfo <argument>");
if (full_help != 0) {
lprintf(LOG_NOTICE,
" Retrieves system info from BMC for given argument");
}
lprintf(LOG_NOTICE, " setsysinfo <argument> <string>");
if (full_help != 0) {
lprintf(LOG_NOTICE,
" Stores system info string for given argument to BMC");
lprintf(LOG_NOTICE, "");
lprintf(LOG_NOTICE, " Valid arguments are:");
}
lprintf(LOG_NOTICE,
" system_fw_version System firmware (e.g. BIOS) version");
lprintf(LOG_NOTICE,
" primary_os_name Primary operating system name");
lprintf(LOG_NOTICE, " os_name Operating system name");
lprintf(LOG_NOTICE,
" system_name System Name of server(vendor dependent)");
lprintf(LOG_NOTICE,
" delloem_os_version Running version of operating system");
lprintf(LOG_NOTICE, " delloem_url URL of BMC webserver");
lprintf(LOG_NOTICE, "");
}
static void
print_watchdog_usage(void)
{
lprintf(LOG_NOTICE,
"usage: watchdog <command>:\n"
"\n"
" set <option[=value]> [<option[=value]> ...]\n"
" Set Watchdog settings\n"
" Options: (* = mandatory)\n"
" timeout=<1-6553> - [0] Initial countdown value, sec\n"
" pretimeout=<1-255> - [0] Pre-timeout interval, sec\n"
" int=<smi|nmi|msg> - [-] Pre-timeout interrupt type\n"
" use=<frb2|post|osload|sms|oem> - [-] Timer use\n"
" clear=<frb2|post|osload|sms|oem> - [-] Clear timer use expiration\n"
" flag, can be specified\n"
" multiple times\n"
" action=<reset|poweroff|cycle|none> - [none] Timer action\n"
" nolog - [-] Don't log the timer use\n"
" dontstop - [-] Don't stop the timer\n"
" while applying settings\n"
"\n"
" get\n"
" Get Current settings\n"
"\n"
" reset\n"
" Restart Watchdog timer based on the most recent settings\n"
"\n"
" off\n"
" Shut off a running Watchdog timer"
);
}
/* ipmi_mc_get_enables - print out MC enables
*
* @intf: ipmi interface
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_mc_get_enables(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct bitfield_data * bf;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_GET_GLOBAL_ENABLES;
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "Get Global Enables command failed");
return -1;
}
if (rsp->ccode) {
lprintf(LOG_ERR, "Get Global Enables command failed: %s",
CC_STRING(rsp->ccode));
return -1;
}
for (bf = mc_enables_bf; bf->name; bf++) {
printf("%-40s : %sabled\n", bf->desc,
rsp->data[0] & bf->mask ? "en" : "dis");
}
return 0;
}
/* ipmi_mc_set_enables - set MC enable flags
*
* @intf: ipmi interface
* @argc: argument count
* @argv: argument list
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_mc_set_enables(struct ipmi_intf * intf, int argc, char ** argv)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct bitfield_data * bf;
uint8_t en;
int i;
if (argc < 1) {
printf_mc_usage();
return (-1);
}
else if (!strcmp(argv[0], "help")) {
printf_mc_usage();
return 0;
}
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_GET_GLOBAL_ENABLES;
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "Get Global Enables command failed");
return -1;
}
if (rsp->ccode) {
lprintf(LOG_ERR, "Get Global Enables command failed: %s",
CC_STRING(rsp->ccode));
return -1;
}
en = rsp->data[0];
for (i = 0; i < argc; i++) {
for (bf = mc_enables_bf; bf->name; bf++) {
int nl = strlen(bf->name);
if (strcmp(argv[i], bf->name))
continue;
if (!strcmp(argv[i]+nl+1, "off")) {
printf("Disabling %s\n", bf->desc);
en &= ~bf->mask;
}
else if (!strcmp(argv[i]+nl+1, "on")) {
printf("Enabling %s\n", bf->desc);
en |= bf->mask;
}
else {
lprintf(LOG_ERR, "Unrecognized option: %s", argv[i]);
}
}
}
if (en == rsp->data[0]) {
printf("\nNothing to change...\n");
ipmi_mc_get_enables(intf);
return 0;
}
req.msg.cmd = BMC_SET_GLOBAL_ENABLES;
req.msg.data = &en;
req.msg.data_len = 1;
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "Set Global Enables command failed");
return -1;
}
else if (rsp->ccode) {
lprintf(LOG_ERR, "Set Global Enables command failed: %s",
CC_STRING(rsp->ccode));
return -1;
}
printf("\nVerifying...\n");
ipmi_mc_get_enables(intf);
return 0;
}
/* IPM Device, Get Device ID Command - Additional Device Support */
const char *ipm_dev_adtl_dev_support[8] = {
"Sensor Device", /* bit 0 */
"SDR Repository Device", /* bit 1 */
"SEL Device", /* bit 2 */
"FRU Inventory Device", /* ... */
"IPMB Event Receiver",
"IPMB Event Generator",
"Bridge",
"Chassis Device" /* bit 7 */
};
/* ipmi_mc_get_deviceid - print information about this MC
*
* @intf: ipmi interface
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_mc_get_deviceid(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct ipm_devid_rsp *devid;
int i;
const char *product=NULL;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_GET_DEVICE_ID;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "Get Device ID command failed");
return -1;
}
if (rsp->ccode) {
lprintf(LOG_ERR, "Get Device ID command failed: %s",
CC_STRING(rsp->ccode));
return -1;
}
devid = (struct ipm_devid_rsp *) rsp->data;
printf("Device ID : %i\n",
devid->device_id);
printf("Device Revision : %i\n",
devid->device_revision & IPM_DEV_DEVICE_ID_REV_MASK);
printf("Firmware Revision : %u.%02x\n",
devid->fw_rev1 & IPM_DEV_FWREV1_MAJOR_MASK,
devid->fw_rev2);
printf("IPMI Version : %x.%x\n",
IPM_DEV_IPMI_VERSION_MAJOR(devid->ipmi_version),
IPM_DEV_IPMI_VERSION_MINOR(devid->ipmi_version));
printf("Manufacturer ID : %lu\n",
(long)IPM_DEV_MANUFACTURER_ID(devid->manufacturer_id));
printf("Manufacturer Name : %s\n",
OEM_MFG_STRING(devid->manufacturer_id));
printf("Product ID : %u (0x%02x%02x)\n",
buf2short((uint8_t *)(devid->product_id)),
devid->product_id[1], devid->product_id[0]);
product = OEM_PROD_STRING(devid->manufacturer_id, devid->product_id);
if (product) {
printf("Product Name : %s\n", product);
}
printf("Device Available : %s\n",
(devid->fw_rev1 & IPM_DEV_FWREV1_AVAIL_MASK) ?
"no" : "yes");
printf("Provides Device SDRs : %s\n",
(devid->device_revision & IPM_DEV_DEVICE_ID_SDR_MASK) ?
"yes" : "no");
printf("Additional Device Support :\n");
for (i = 0; i < IPM_DEV_ADTL_SUPPORT_BITS; i++) {
if (devid->adtl_device_support & (1 << i)) {
printf(" %s\n", ipm_dev_adtl_dev_support[i]);
}
}
if (rsp->data_len == sizeof(*devid)) {
printf("Aux Firmware Rev Info : \n");
/* These values could be looked-up by vendor if documented,
* so we put them on individual lines for better treatment later
*/
printf(" 0x%02x\n 0x%02x\n 0x%02x\n 0x%02x\n",
devid->aux_fw_rev[0],
devid->aux_fw_rev[1],
devid->aux_fw_rev[2],
devid->aux_fw_rev[3]);
}
return 0;
}
/* _ipmi_mc_get_guid - Gets BMCs GUID according to (22.14)
*
* @intf: ipmi interface
* @guid: pointer where to store BMC GUID
*
* returns - negative number means error, positive is a ccode.
*/
int
_ipmi_mc_get_guid(struct ipmi_intf *intf, ipmi_guid_t *guid)
{
struct ipmi_rs *rsp;
struct ipmi_rq req;
if (!guid) {
return (-3);
}
memset(guid, 0, sizeof(ipmi_guid_t));
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_GET_GUID;
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
return (-1);
} else if (rsp->ccode) {
return rsp->ccode;
} else if (rsp->data_len != 16
|| rsp->data_len != sizeof(ipmi_guid_t)) {
return (-2);
}
memcpy(guid, &rsp->data[0], sizeof(ipmi_guid_t));
return 0;
}
/* A helper function to convert GUID time to time_t */
static time_t _guid_time(uint64_t t_low, uint64_t t_mid, uint64_t t_hi)
{
/* GUID time-stamp is a 60-bit value representing the
* count of 100ns intervals since 00:00:00.00, 15 Oct 1582 */
const uint64_t t100ns_in_sec = 10000000LL;
/* Seconds from 15 Oct 1582 to 1 Jan 1970 00:00:00 */
uint64_t epoch_since_gregorian = 12219292800;
/* 100ns intervals since 15 Oct 1582 00:00:00 */
uint64_t gregorian = (GUID_TIME_HI(t_hi) << 48)
| (t_mid << 32)
| t_low;
time_t unixtime; /* We need timestamp in seconds since UNIX epoch */
gregorian /= t100ns_in_sec; /* Convert to seconds */
unixtime = gregorian - epoch_since_gregorian;
return unixtime;
}
#define TM_YEAR_BASE 1900
#define EPOCH_YEAR 1970
static bool _is_time_valid(time_t t)
{
time_t t_now = time(NULL);
struct tm tm;
struct tm now;
gmtime_r(&t, &tm);
gmtime_r(&t_now, &now);
/* It's enought to check that the year fits in [Epoch .. now] interval */
if (tm.tm_year + TM_YEAR_BASE < EPOCH_YEAR)
return false;
if (tm.tm_year > now.tm_year) {
/* GUID timestamp can't be in future */
return false;
}
return true;
}
/** ipmi_mc_parse_guid - print-out given BMC GUID
*
* The function parses the raw guid data according to the requested encoding
* mode. If GUID_AUTO mode is requested, then automatic detection of encoding
* is attempted using the version nibble of the time_hi_and_version field of
* each of the supported encodings.
*
* Considering the rather random nature of GUIDs, it may happen that the
* version nibble is valid for multiple encodings at the same time. That's why
* if the version is 1 (time-based), the function will also check validity of
* the time stamp. If a valid time stamp is found for a given mode, the mode is
* considered detected and no further checks are performed. Otherwise other
* encodings are probed the same way. If in neither encoding the valid version
* nibble happened to indicate time-based version or no valid time-stamp has
* been found, then the last probed encoding with valid version nibble is
* considered detected. If none of the probed encodings indicated a valid
* version nibble, then fall back to GUID_DUMP
*
* @param[in] guid - The original GUID data as received from BMC
* @param[in] mode - The requested mode/encoding
*
* @returns parsed GUID
*/
parsed_guid_t ipmi_parse_guid(void *guid, ipmi_guid_mode_t guid_mode)
{
ipmi_guid_mode_t i;
ipmi_guid_t *ipmi_guid = guid;
rfc_guid_t *rfc_guid = guid;
parsed_guid_t parsed_guid = { 0 };
uint32_t t_low[GUID_REAL_MODES];
uint16_t t_mid[GUID_REAL_MODES];
uint16_t t_hi[GUID_REAL_MODES];
uint16_t clk[GUID_REAL_MODES];
time_t seconds[GUID_REAL_MODES];
bool detect = false;
/* Unless another mode is detected, default to dumping */
if (GUID_AUTO == guid_mode) {
detect = true;
guid_mode = GUID_DUMP;
}
/* Try to convert time using all possible methods to use
* the result later if GUID_AUTO is requested */
/* For IPMI all fields are little-endian (LSB first) */
t_hi[GUID_IPMI] = ipmi16toh(&ipmi_guid->time_hi_and_version);
t_mid[GUID_IPMI] = ipmi16toh(&ipmi_guid->time_mid);
t_low[GUID_IPMI] = ipmi32toh(&ipmi_guid->time_low);
clk[GUID_IPMI] = ipmi16toh(&ipmi_guid->clock_seq_and_rsvd);
/* For RFC4122 all fields are in network byte order (MSB first) */
t_hi[GUID_RFC4122] = ntohs(rfc_guid->time_hi_and_version);
t_mid[GUID_RFC4122] = ntohs(rfc_guid->time_mid);
t_low[GUID_RFC4122] = ntohl(rfc_guid->time_low);
clk[GUID_RFC4122] = ntohs(rfc_guid->clock_seq_and_rsvd);
/* For SMBIOS time fields are little-endian (as in IPMI), the rest is
* in network order (as in RFC4122) */
t_hi[GUID_SMBIOS] = ipmi16toh(&rfc_guid->time_hi_and_version);
t_mid[GUID_SMBIOS] = ipmi16toh(&rfc_guid->time_mid);
t_low[GUID_SMBIOS] = ipmi32toh(&rfc_guid->time_low);
clk[GUID_SMBIOS] = ntohs(rfc_guid->clock_seq_and_rsvd);
/* Using 0 here to allow for reordering of modes in ipmi_guid_mode_t */
for (i = 0; i < GUID_REAL_MODES; ++i) {
seconds[i] = _guid_time(t_low[i], t_mid[i], t_hi[i]);
/* If autodetection was initially requested and mode
* hasn't been detected yet */
if (detect) {
guid_version_t ver = GUID_VERSION(t_hi[i]);
if (is_guid_version_valid(ver)) {
guid_mode = i;
if (GUID_VERSION_TIME == ver && _is_time_valid(seconds[i])) {
break;
}
}
}
}
if (guid_mode >= GUID_REAL_MODES) {
guid_mode = GUID_DUMP;
/* The endianness and field order are irrelevant for dump mode */
memcpy(&parsed_guid, guid, sizeof(ipmi_guid_t));
goto out;
}
/*
* Return only a valid version in the parsed version field.
* If one needs the raw value, they still may use
* GUID_VERSION(parsed_guid.time_hi_and_version)
*/
parsed_guid.ver = GUID_VERSION(t_hi[guid_mode]);
if (parsed_guid.ver > GUID_VERSION_MAX) {
parsed_guid.ver = GUID_VERSION_UNKNOWN;
}
if (GUID_VERSION_TIME == parsed_guid.ver) {
parsed_guid.time = seconds[guid_mode];
}
if (GUID_IPMI == guid_mode) {
/*
* In IPMI all fields are little-endian (LSB first)
* That is, first byte last. Hence, swap before copying.
*/
memcpy(parsed_guid.node,
array_byteswap(ipmi_guid->node, GUID_NODE_SZ),
GUID_NODE_SZ);
} else {
/*
* For RFC4122 and SMBIOS the node field is in network byte order.
* That is first byte first. Hence, copy as is.
*/
memcpy(parsed_guid.node, rfc_guid->node, GUID_NODE_SZ);
}
parsed_guid.time_low = t_low[guid_mode];
parsed_guid.time_mid = t_mid[guid_mode];
parsed_guid.time_hi_and_version = t_hi[guid_mode];
parsed_guid.clock_seq_and_rsvd = clk[guid_mode];
out:
parsed_guid.mode = guid_mode;
return parsed_guid;
}
parsed_guid_t
ipmi_guid2str(char *str, const void *data, ipmi_guid_mode_t mode)
{
parsed_guid_t guid;
guid = ipmi_parse_guid(data, mode);
if (GUID_DUMP == guid.mode) {
sprintf(str, "%s", buf2str(data, sizeof(ipmi_guid_t)));
return guid;
}
sprintf(str, "%08x-%04x-%04x-%04x-%02x%02x%02x%02x%02x%02x",
(int)guid.time_low,
(int)guid.time_mid,
(int)guid.time_hi_and_version,
(int)guid.clock_seq_and_rsvd,
(int)guid.node[0], (int)guid.node[1], (int)guid.node[2],
(int)guid.node[3], (int)guid.node[4], (int)guid.node[5]);
return guid;
}
/* ipmi_mc_print_guid - print-out given BMC GUID
*
* @param[in] intf - The IPMI interface to request GUID from
* @param[in] guid_mode - GUID decoding mode
*
* @returns status code
* @retval 0 - Success
* @retval -1 - Error
*/
static int
ipmi_mc_print_guid(struct ipmi_intf *intf, ipmi_guid_mode_t guid_mode)
{
/* Allocate a byte array for ease of use in dump mode */
uint8_t guid_data[sizeof(ipmi_guid_t)];
/* These are host architecture specific */
parsed_guid_t guid;
const char *guid_ver_str[GUID_VERSION_COUNT] = {
[GUID_VERSION_UNKNOWN] = "Unknown/unsupported",
[GUID_VERSION_TIME] = "Time-based",
[GUID_VERSION_DCE] = "DCE Security with POSIX UIDs (not for IPMI)",
[GUID_VERSION_MD5] = "Name-based using MD5",
[GUID_VERSION_RND] = "Random or pseudo-random",
[GUID_VERSION_SHA1] = "Name-based using SHA-1"
};
const char *guid_mode_str[GUID_TOTAL_MODES] = {
[GUID_IPMI] = "IPMI",
[GUID_RFC4122] = "RFC4122",
[GUID_SMBIOS] = "SMBIOS",
[GUID_AUTO] = "Automatic (if you see this, report a bug)",
[GUID_DUMP] = "Unknown (data dumped)"
};
int rc;
rc = _ipmi_mc_get_guid(intf, (ipmi_guid_t *)guid_data);
if (eval_ccode(rc) != 0) {
return (-1);
}
printf("System GUID : ");
char buf[GUID_STR_MAXLEN + 1];
guid = ipmi_guid2str(buf, guid_data, guid_mode);
printf("%s\n", buf);
/* Print the GUID properties */
if (GUID_AUTO == guid_mode) {
/* ipmi_parse_guid() returns only valid modes in guid.ver */
printf("GUID Encoding : %s", guid_mode_str[guid.mode]);
if (GUID_IPMI != guid.mode) {
printf(" (WARNING: IPMI Specification violation!)");
}
printf("\n");
}
printf("GUID Version : %s", guid_ver_str[guid.ver]);
switch (guid.ver) {
case GUID_VERSION_UNKNOWN:
printf(" (%d)\n", GUID_VERSION((int)guid.time_hi_and_version));
break;
case GUID_VERSION_TIME:
printf("\nTimestamp : %s\n", ipmi_timestamp_numeric(guid.time));
break;
default:
printf("\n");
}
return 0;
}
/* ipmi_mc_get_selftest - returns and print selftest results
*
* @intf: ipmi interface
*/
static int ipmi_mc_get_selftest(struct ipmi_intf * intf)
{
int rv = 0;
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct ipm_selftest_rsp *sft_res;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_GET_SELF_TEST;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "No response from devices\n");
return -1;
}
if (rsp->ccode) {
lprintf(LOG_ERR, "Bad response: (%s)",
CC_STRING(rsp->ccode));
return -1;
}
sft_res = (struct ipm_selftest_rsp *) rsp->data;
if (sft_res->code == IPM_SFT_CODE_OK) {
printf("Selftest: passed\n");
rv = 0;
}
else if (sft_res->code == IPM_SFT_CODE_NOT_IMPLEMENTED) {
printf("Selftest: not implemented\n");
rv = -1;
}
else if (sft_res->code == IPM_SFT_CODE_DEV_CORRUPTED) {
printf("Selftest: device corrupted\n");
rv = -1;
if (sft_res->test & IPM_SELFTEST_SEL_ERROR) {
printf(" -> SEL device not accessible\n");
}
if (sft_res->test & IPM_SELFTEST_SDR_ERROR) {
printf(" -> SDR repository not accessible\n");
}
if (sft_res->test & IPM_SELFTEST_FRU_ERROR) {
printf("FRU device not accessible\n");
}
if (sft_res->test & IPM_SELFTEST_IPMB_ERROR) {
printf("IPMB signal lines do not respond\n");
}
if (sft_res->test & IPM_SELFTEST_SDRR_EMPTY) {
printf("SDR repository empty\n");
}
if (sft_res->test & IPM_SELFTEST_INTERNAL_USE) {
printf("Internal Use Area corrupted\n");
}
if (sft_res->test & IPM_SELFTEST_FW_BOOTBLOCK) {
printf("Controller update boot block corrupted\n");
}
if (sft_res->test & IPM_SELFTEST_FW_CORRUPTED) {
printf("controller operational firmware corrupted\n");
}
}
else if (sft_res->code == IPM_SFT_CODE_FATAL_ERROR) {
printf("Selftest : fatal error\n");
printf("Failure code : %02x\n", sft_res->test);
rv = -1;
}
else if (sft_res->code == IPM_SFT_CODE_RESERVED) {
printf("Selftest: N/A");
rv = -1;
}
else {
printf("Selftest : device specific (%02Xh)\n", sft_res->code);
printf("Failure code : %02Xh\n", sft_res->test);
rv = 0;
}
return rv;
}
struct wdt_string_s {
const char *get; /* The name of 'timer use' for `watchdog get` command */
const char *set; /* The name of 'timer use' for `watchdog set` command */
};
#define WDTS(g,s) &(const struct wdt_string_s){ (g), (s) }
const struct wdt_string_s *wdt_use[] = {
WDTS("Reserved", "none"),
WDTS("BIOS FRB2", "frb2"),
WDTS("BIOS/POST", "post"),
WDTS("OS Load", "osload"),
WDTS("SMS/OS", "sms"),
WDTS("OEM", "oem"),
WDTS("Reserved", NULL),
WDTS("Reserved", NULL),
NULL
};
const struct wdt_string_s *wdt_int[] = {
WDTS("None", "none"),
WDTS("SMI", "smi"),
WDTS("NMI/Diagnostic", "nmi"),
WDTS("Messaging", "msg"),
WDTS("Reserved", NULL),
WDTS("Reserved", NULL),
WDTS("Reserved", NULL),
WDTS("Reserved", NULL),
NULL
};
const struct wdt_string_s *wdt_action[] = {
WDTS("No action", "none"),
WDTS("Hard Reset", "reset"),
WDTS("Power Down", "poweroff"),
WDTS("Power Cycle", "cycle"),
WDTS("Reserved", NULL),
WDTS("Reserved", NULL),
WDTS("Reserved", NULL),
WDTS("Reserved", NULL),
NULL
};
int find_set_wdt_string(const struct wdt_string_s *w[], const char *s)
{
int val = 0;
while (w[val]) {
if (!strcmp(s, w[val]->set)) break;
++val;
}
if (!w[val]) {
return -1;
}
return val;
}
/* ipmi_mc_get_watchdog
*
* @intf: ipmi interface
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_mc_get_watchdog(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct ipm_get_watchdog_rsp * wdt_res;
double init_cnt;
double pres_cnt;
size_t i;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_GET_WATCHDOG_TIMER;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "Get Watchdog Timer command failed");
return -1;
}
if (rsp->ccode) {
lprintf(LOG_ERR, "Get Watchdog Timer command failed: %s",
CC_STRING(rsp->ccode));
return -1;
}
wdt_res = (struct ipm_get_watchdog_rsp *) rsp->data;
/* Convert 100ms intervals to seconds */
init_cnt = (double)ipmi16toh(&wdt_res->init_cnt_le) / 10.0;
pres_cnt = (double)ipmi16toh(&wdt_res->pres_cnt_le) / 10.0;
printf("Watchdog Timer Use: %s (0x%02x)\n",
wdt_use[IPMI_WDT_GET(wdt_res->use, USE)]->get, wdt_res->use);
printf("Watchdog Timer Is: %s\n",
IS_WDT_BIT(wdt_res->use, USE_RUNNING)
? "Started/Running"
: "Stopped");
printf("Watchdog Timer Logging: %s\n",
IS_WDT_BIT(wdt_res->use, USE_NOLOG)
? "Off"
: "On");
printf("Watchdog Timer Action: %s (0x%02x)\n",
wdt_action[IPMI_WDT_GET(wdt_res->intr_action, ACTION)]->get,
wdt_res->intr_action);
printf("Pre-timeout interrupt: %s\n",
wdt_int[IPMI_WDT_GET(wdt_res->intr_action, INTR)]->get);
printf("Pre-timeout interval: %d seconds\n", wdt_res->pre_timeout);
printf("Timer Expiration Flags: %s(0x%02x)\n",
wdt_res->exp_flags ? "" : "None ",
wdt_res->exp_flags);
for (i = 0; i < sizeof(wdt_res->exp_flags) * CHAR_BIT; ++i) {
if (IS_SET(wdt_res->exp_flags, i)) {
printf(" * %s\n", wdt_use[i]->get);
}
}
printf("Initial Countdown: %0.1f sec\n", init_cnt);
printf("Present Countdown: %0.1f sec\n", pres_cnt);
return 0;
}
/* Configuration to set with ipmi_mc_set_watchdog() */
typedef struct ipmi_mc_set_wdt_conf_s {
uint16_t timeout;
uint8_t pretimeout;
uint8_t intr;
uint8_t use;
uint8_t clear;
uint8_t action;
bool nolog;
bool dontstop;
} wdt_conf_t;
/* Options parser for ipmi_mc_set_watchdog() */
static bool
parse_set_wdt_options(wdt_conf_t *conf, int argc, char *argv[])
{
const int MAX_TIMEOUT = 6553; /* Seconds, makes almost USHRT_MAX when
converted to 100ms intervals */
const int MAX_PRETIMEOUT = 255; /* Seconds */
bool error = true;
int i;
if (!argc || !strcmp(argv[0], "help")) {
goto out;
}
for (i = 0; i < argc; ++i) {
long val;
char *vstr = strchr(argv[i], '=');
if (vstr)
vstr++; /* Point to the value */
switch (argv[i][0]) { /* only check the first letter to allow for
shortcuts */
case 't': /* timeout */
val = strtol(vstr, NULL, 10);
if (val < 1 || val > MAX_TIMEOUT) {
lprintf(LOG_ERR, "Timeout value %lu is out of range (1-%d)\n",
val, MAX_TIMEOUT);
goto out;
}
conf->timeout = val * 10; /* Convert seconds to 100ms intervals */
break;
case 'p': /* pretimeout */
val = strtol(vstr, NULL, 10);
if (val < 1 || val > MAX_PRETIMEOUT) {
lprintf(LOG_ERR,
"Pretimeout value %lu is out of range (1-%d)\n",
val, MAX_PRETIMEOUT);
goto out;
}
conf->pretimeout = val; /* Convert seconds to 100ms intervals */
break;
case 'i': /* int */
if (0 > (val = find_set_wdt_string(wdt_int, vstr))) {
lprintf(LOG_ERR, "Interrupt type '%s' is not valid\n", vstr);
goto out;
}
conf->intr = val;
break;
case 'u': /* use */
if (0 > (val = find_set_wdt_string(wdt_use, vstr))) {
lprintf(LOG_ERR, "Use '%s' is not valid\n", vstr);
goto out;
}
conf->use = val;
break;
case 'a': /* action */
if (0 > (val = find_set_wdt_string(wdt_action, vstr))) {
lprintf(LOG_ERR, "Use '%s' is not valid\n", vstr);
goto out;
}
conf->action = val;
break;
case 'c': /* clear */
if (0 > (val = find_set_wdt_string(wdt_use, vstr))) {
lprintf(LOG_ERR, "Use '%s' is not valid\n", vstr);
goto out;
}
conf->clear |= 1 << val;
break;
case 'n': /* nolog */
conf->nolog = true;
break;
case 'd': /* dontstop */
conf->dontstop = true;
break;
default:
lprintf(LOG_ERR, "Invalid option '%s'", argv[i]);
break;
}
}
error = false;
out:
return error;
}
/* ipmi_mc_set_watchdog
*
* @intf: ipmi interface
* @argc: argument count
* @argv: arguments
*
* returns 0 on success
* returns non-zero (-1 or IPMI completion code) on error
*/
static int
ipmi_mc_set_watchdog(struct ipmi_intf * intf, int argc, char *argv[])
{
struct ipmi_rs * rsp;
struct ipmi_rq req = {0};
unsigned char msg_data[6] = {0};
int rc = -1;
wdt_conf_t conf = {0};
bool options_error = parse_set_wdt_options(&conf, argc, argv);
/* Fill data bytes according to IPMI 2.0 Spec section 27.6 */
msg_data[0] = conf.nolog << IPMI_WDT_USE_NOLOG_SHIFT;
msg_data[0] |= conf.dontstop << IPMI_WDT_USE_DONTSTOP_SHIFT;
msg_data[0] |= conf.use & IPMI_WDT_USE_MASK;
msg_data[1] = (conf.intr & IPMI_WDT_INTR_MASK) << IPMI_WDT_INTR_SHIFT;
msg_data[1] |= conf.action & IPMI_WDT_ACTION_MASK;
msg_data[2] = conf.pretimeout;
msg_data[3] = conf.clear;
htoipmi16(conf.timeout, &msg_data[4]);
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_SET_WATCHDOG_TIMER;
req.msg.data_len = 6;
req.msg.data = msg_data;
lprintf(LOG_INFO,
"Sending Set Watchdog command [%02X %02X %02X %02X %02X %02X]:"
, msg_data[0], msg_data[1], msg_data[2]
, msg_data[3], msg_data[4], msg_data[5]
);
lprintf(LOG_INFO, " - nolog = %d", conf.nolog);
lprintf(LOG_INFO, " - dontstop = %d", conf.dontstop);
lprintf(LOG_INFO, " - use = 0x%02hhX", conf.use);
lprintf(LOG_INFO, " - intr = 0x%02hhX", conf.intr);
lprintf(LOG_INFO, " - action = 0x%02hhX", conf.action);
lprintf(LOG_INFO, " - pretimeout = %hhu", conf.pretimeout);
lprintf(LOG_INFO, " - clear = 0x%02hhX", conf.clear);
lprintf(LOG_INFO, " - timeout = %hu", conf.timeout);
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "Set Watchdog Timer command failed");
goto out;
}
rc = rsp->ccode;
if (rc) {
lprintf(LOG_ERR, "Set Watchdog Timer command failed: %s",
CC_STRING(rsp->ccode));
goto out;
}
lprintf(LOG_NOTICE, "Watchdog Timer was successfully configured");
out:
if (options_error) print_watchdog_usage();
return rc;
}
/* ipmi_mc_shutoff_watchdog
*
* @intf: ipmi interface
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_mc_shutoff_watchdog(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
unsigned char msg_data[6];
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_SET_WATCHDOG_TIMER;
req.msg.data = msg_data;
req.msg.data_len = 6;
/*
* The only set cmd we're allowing is to shut off the timer.
* Turning on the timer should be the job of the ipmi watchdog driver.
* See 'modinfo ipmi_watchdog' for more info. (NOTE: the reset
* command will restart the timer if it's already been initialized.)
*
* Out-of-band watchdog set commands can still be sent via the raw
* command interface but this is a very dangerous thing to do since
* a periodic "poke"/reset over a network is unreliable. This is
* not a recommended way to use the IPMI watchdog commands.
*/
msg_data[0] = IPM_WATCHDOG_SMS_OS;
msg_data[1] = IPM_WATCHDOG_NO_ACTION;
msg_data[2] = 0x00; /* pretimeout interval */
msg_data[3] = IPM_WATCHDOG_CLEAR_SMS_OS;
msg_data[4] = 0xb8; /* countdown lsb (100 ms/count) */
msg_data[5] = 0x0b; /* countdown msb - 5 mins */
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "Watchdog Timer Shutoff command failed!");
return -1;
}
if (rsp->ccode) {
lprintf(LOG_ERR, "Watchdog Timer Shutoff command failed! %s",
CC_STRING(rsp->ccode));
return -1;
}
printf("Watchdog Timer Shutoff successful -- timer stopped\n");
return 0;
}
/* ipmi_mc_rst_watchdog
*
* @intf: ipmi interface
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_mc_rst_watchdog(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_RESET_WATCHDOG_TIMER;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
lprintf(LOG_ERR, "Reset Watchdog Timer command failed!");
return -1;
}
if (rsp->ccode) {
lprintf(LOG_ERR, "Reset Watchdog Timer command failed: %s",
(rsp->ccode == IPM_WATCHDOG_RESET_ERROR)
? "Attempt to reset uninitialized watchdog"
: CC_STRING(rsp->ccode));
return -1;
}
printf("IPMI Watchdog Timer Reset - countdown restarted!\n");
return 0;
}
/* ipmi_mc_main - top-level handler for MC functions
*
* @intf: ipmi interface
* @argc: number of arguments
* @argv: argument list
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_mc_main(struct ipmi_intf * intf, int argc, char ** argv)
{
int rc = 0;
if (argc < 1) {
lprintf(LOG_ERR, "Not enough parameters given.");
printf_mc_usage();
rc = (-1);
}
else if (!strcmp(argv[0], "help")) {
printf_mc_usage();
rc = 0;
}
else if (!strcmp(argv[0], "reset")) {
if (argc < 2) {
lprintf(LOG_ERR, "Not enough parameters given.");
printf_mc_reset_usage();
rc = (-1);
}
else if (!strcmp(argv[1], "help")) {
printf_mc_reset_usage();
rc = 0;
}
else if (!strcmp(argv[1], "cold")) {
rc = ipmi_mc_reset(intf, BMC_COLD_RESET);
}
else if (!strcmp(argv[1], "warm")) {
rc = ipmi_mc_reset(intf, BMC_WARM_RESET);
}
else {
lprintf(LOG_ERR, "Invalid mc/bmc %s command: %s", argv[0], argv[1]);
printf_mc_reset_usage();
rc = (-1);
}
}
else if (!strcmp(argv[0], "info")) {
rc = ipmi_mc_get_deviceid(intf);
}
else if (!strcmp(argv[0], "guid")) {
ipmi_guid_mode_t guid_mode = GUID_AUTO;
/* Allow for 'rfc' and 'rfc4122' */
if (argc > 1) {
if (!strcmp(argv[1], "rfc")) {
guid_mode = GUID_RFC4122;
}
else if (!strcmp(argv[1], "smbios")) {
guid_mode = GUID_SMBIOS;
}
else if (!strcmp(argv[1], "ipmi")) {
guid_mode = GUID_IPMI;
}
else if (!strcmp(argv[1], "auto")) {
guid_mode = GUID_AUTO;
}
else if (!strcmp(argv[1], "dump")) {
guid_mode = GUID_DUMP;
}
}
rc = ipmi_mc_print_guid(intf, guid_mode);
}
else if (!strcmp(argv[0], "getenables")) {
rc = ipmi_mc_get_enables(intf);
}
else if (!strcmp(argv[0], "setenables")) {
rc = ipmi_mc_set_enables(intf, argc-1, &(argv[1]));
}
else if (!strcmp(argv[0], "selftest")) {
rc = ipmi_mc_get_selftest(intf);
}
else if (!strcmp(argv[0], "watchdog")) {
if (argc < 2) {
lprintf(LOG_ERR, "Not enough parameters given.");
print_watchdog_usage();
rc = (-1);
}
else if (!strcmp(argv[1], "help")) {
print_watchdog_usage();
rc = 0;
}
else if (!strcmp(argv[1], "set")) {
if (argc < 3) { /* Requires options */
lprintf(LOG_ERR, "Not enough parameters given.");
print_watchdog_usage();
rc = (-1);
}
else {
rc = ipmi_mc_set_watchdog(intf, argc - 2, &(argv[2]));
}
}
else if (!strcmp(argv[1], "get")) {
rc = ipmi_mc_get_watchdog(intf);
}
else if (!strcmp(argv[1], "off")) {
rc = ipmi_mc_shutoff_watchdog(intf);
}
else if (!strcmp(argv[1], "reset")) {
rc = ipmi_mc_rst_watchdog(intf);
}
else {
lprintf(LOG_ERR, "Invalid mc/bmc %s command: %s", argv[0], argv[1]);
print_watchdog_usage();
rc = (-1);
}
}
else if (!strcmp(argv[0], "getsysinfo")) {
rc = ipmi_sysinfo_main(intf, argc, argv, 0);
}
else if (!strcmp(argv[0], "setsysinfo")) {
rc = ipmi_sysinfo_main(intf, argc, argv, 1);
}
else {
lprintf(LOG_ERR, "Invalid mc/bmc command: %s", argv[0]);
printf_mc_usage();
rc = (-1);
}
return rc;
}
/*
* sysinfo_param() - function converts sysinfo param to int
*
* @str - user input string
* @maxset - ?
*
* returns (-1) on error
* returns > 0 on success
*/
static int
sysinfo_param(const char *str, int *maxset)
{
if (!str || !maxset)
return (-1);
*maxset = 4;
if (!strcmp(str, "system_name"))
return IPMI_SYSINFO_HOSTNAME;
else if (!strcmp(str, "primary_os_name"))
return IPMI_SYSINFO_PRIMARY_OS_NAME;
else if (!strcmp(str, "os_name"))
return IPMI_SYSINFO_OS_NAME;
else if (!strcmp(str, "delloem_os_version"))
return IPMI_SYSINFO_DELL_OS_VERSION;
else if (!strcmp(str, "delloem_url")) {
*maxset = 2;
return IPMI_SYSINFO_DELL_URL;
} else if (!strcmp(str, "system_fw_version")) {
return IPMI_SYSINFO_SYSTEM_FW_VERSION;
}
return (-1);
}
/*
* ipmi_mc_getsysinfo() - function processes the IPMI Get System Info command
*
* @intf - ipmi interface
* @param - parameter eg. 0xC0..0xFF = OEM
* @block - number of block parameters
* @set - number of set parameters
* @len - length of buffer
* @buffer - pointer to buffer
*
* returns (-1) on failure
* returns 0 on success
* returns > 0 IPMI code
*/
int
ipmi_mc_getsysinfo(struct ipmi_intf * intf, int param, int block, int set,
int len, void *buffer)
{
uint8_t data[4];
struct ipmi_rs *rsp = NULL;
struct ipmi_rq req = {0};
memset(buffer, 0, len);
memset(data, 0, 4);
req.msg.netfn = IPMI_NETFN_APP;
req.msg.lun = 0;
req.msg.cmd = IPMI_GET_SYS_INFO;
req.msg.data_len = 4;
req.msg.data = data;
if (verbose > 1)
printf("getsysinfo: %.2x/%.2x/%.2x\n", param, block, set);
data[0] = 0; /* get/set */
data[1] = param;
data[2] = block;
data[3] = set;
/*
* Format of get output is:
* u8 param_rev
* u8 selector
* u8 encoding bit[0-3];
* u8 length
* u8 data0[14]
*/
rsp = intf->sendrecv(intf, &req);
if (!rsp)
return (-1);
if (!rsp->ccode) {
if (len > rsp->data_len)
len = rsp->data_len;
if (len && buffer)
memcpy(buffer, rsp->data, len);
}
return rsp->ccode;
}
/*
* ipmi_mc_setsysinfo() - function processes the IPMI Set System Info command
*
* @intf - ipmi interface
* @len - length of buffer
* @buffer - pointer to buffer
*
* returns (-1) on failure
* returns 0 on success
* returns > 0 IPMI code
*/
int
ipmi_mc_setsysinfo(struct ipmi_intf * intf, int len, void *buffer)
{
struct ipmi_rs *rsp = NULL;
struct ipmi_rq req = {0};
req.msg.netfn = IPMI_NETFN_APP;
req.msg.lun = 0;
req.msg.cmd = IPMI_SET_SYS_INFO;
req.msg.data_len = len;
req.msg.data = buffer;
/*
* Format of set input:
* u8 param rev
* u8 selector
* u8 data1[16]
*/
rsp = intf->sendrecv(intf, &req);
if (rsp) {
return rsp->ccode;
}
return -1;
}
static int
ipmi_sysinfo_main(struct ipmi_intf *intf, int argc, char ** argv, int is_set)
{
char *str;
unsigned char infostr[256];
char paramdata[18];
int len, maxset, param, pos, rc, set;
if (argc == 2 && !strcmp(argv[1], "help")) {
printf_sysinfo_usage(1);
return 0;
}
else if (argc < 2 || (is_set == 1 && argc < 3)) {
lprintf(LOG_ERR, "Not enough parameters given.");
printf_sysinfo_usage(1);
return (-1);
}
/* Get Parameters */
if ((param = sysinfo_param(argv[1], &maxset)) < 0) {
lprintf(LOG_ERR, "Invalid mc/bmc %s command: %s", argv[0], argv[1]);
printf_sysinfo_usage(1);
return (-1);
}
rc = 0;
if (is_set != 0) {
str = argv[2];
set = pos = 0;
len = strlen(str);
/* first block holds 14 bytes, all others hold 16 */
if ((len + 2 + 15) / 16 >= maxset)
len = (maxset * 16) - 2;
do {
memset(paramdata, 0, sizeof(paramdata));
paramdata[0] = param;
paramdata[1] = set;
if (set == 0) {
/* First block is special case */
paramdata[2] = 0; /* ascii encoding */
paramdata[3] = len; /* length */
strncpy(paramdata + 4, str + pos, IPMI_SYSINFO_SET0_SIZE);
pos += IPMI_SYSINFO_SET0_SIZE;
}
else {
strncpy(paramdata + 2, str + pos, IPMI_SYSINFO_SETN_SIZE);
pos += IPMI_SYSINFO_SETN_SIZE;
}
rc = ipmi_mc_setsysinfo(intf, 18, paramdata);
if (rc)
break;
set++;
} while (pos < len);
}
else {
memset(infostr, 0, sizeof(infostr));
/* Read blocks of data */
pos = 0;
for (set = 0; set < maxset; set++) {
rc = ipmi_mc_getsysinfo(intf, param, set, 0, 18, paramdata);
if (rc)
break;
if (set == 0) {
/* First block is special case */
if ((paramdata[2] & 0xF) == 0) {
/* Determine max number of blocks to read */
maxset = ((paramdata[3] + 2) + 15) / 16;
}
memcpy(infostr + pos, paramdata + 4, IPMI_SYSINFO_SET0_SIZE);
pos += IPMI_SYSINFO_SET0_SIZE;
}
else {
memcpy(infostr + pos, paramdata + 2, IPMI_SYSINFO_SETN_SIZE);
pos += IPMI_SYSINFO_SETN_SIZE;
}
}
printf("%s\n", infostr);
}
if (rc < 0) {
lprintf(LOG_ERR, "%s %s set %d command failed", argv[0], argv[1], set);
}
else if (rc == 0x80) {
lprintf(LOG_ERR, "%s %s parameter not supported", argv[0], argv[1]);
}
else if (rc > 0) {
lprintf(LOG_ERR, "%s command failed: %s", argv[0],
CC_STRING(rc));
}
return rc;
}