ipmitool/ipmitool/lib/ipmi_sdr.c
2004-11-19 19:51:16 +00:00

1844 lines
52 KiB
C

/*
* Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind.
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
* SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
* SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA,
* OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
* PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
* LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,
* EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that this software is not designed or intended for use
* in the design, construction, operation or maintenance of any nuclear
* facility.
*/
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <time.h>
#include <ipmitool/ipmi.h>
#include <ipmitool/ipmi_sdr.h>
#include <ipmitool/ipmi_intf.h>
#include <ipmitool/ipmi_sel.h>
#include <ipmitool/ipmi_entity.h>
#include <ipmitool/ipmi_constants.h>
#include <ipmitool/ipmi_strings.h>
#if HAVE_CONFIG_H
# include <config.h>
#endif
extern int verbose;
static int sdr_max_read_len = GET_SDR_ENTIRE_RECORD;
static struct sdr_record_list * sdr_list_head = NULL;
static struct sdr_record_list * sdr_list_tail = NULL;
static struct ipmi_sdr_iterator * sdr_list_itr = NULL;
/* convert unsigned value to 2's complement signed */
int utos(unsigned val, unsigned bits)
{
int x = pow(10, bits-1);
if (val & x) {
x = pow(2, bits-1);
return -((~val & (x-1))+1);
}
else return val;
}
float
sdr_convert_sensor_reading(struct sdr_record_full_sensor * sensor, unsigned char val)
{
int m, b, k1, k2;
m = __TO_M(sensor->mtol);
b = __TO_B(sensor->bacc);
k1 = __TO_B_EXP(sensor->bacc);
k2 = __TO_R_EXP(sensor->bacc);
switch (sensor->unit.analog)
{
case 0:
return (float)(((m * val) + (b * pow(10, k1))) * pow(10, k2));
case 1:
if (val & 0x80) val ++;
/* Deliberately fall through to case 2. */
case 2:
return (float)(((m * (signed char)val) + (b * pow(10, k1))) * pow(10, k2));
default:
/* Oops! This isn't an analog sensor. */
return 0;
}
}
unsigned char
sdr_convert_sensor_value_to_raw(struct sdr_record_full_sensor * sensor, float val)
{
int m, b, k1, k2;
double result;
m = __TO_M(sensor->mtol);
b = __TO_B(sensor->bacc);
k1 = __TO_B_EXP(sensor->bacc);
k2 = __TO_R_EXP(sensor->bacc);
if (sensor->unit.analog > 2) /* This isn't an analog sensor. */
return 0;
if (m == 0) /* don't divide by zero */
return 0;
result = ((val / pow(10, k2)) - (b * pow(10, k1))) / m;
if ((result -(int)result) >= .5)
return (unsigned char)ceil(result);
else
return (unsigned char)result;
}
#define READING_UNAVAILABLE 0x20
#define SCANNING_DISABLED 0x80
#define GET_SENSOR_READING 0x2d
#define GET_SENSOR_FACTORS 0x23
#define GET_SENSOR_THRES 0x27
#define GET_SENSOR_TYPE 0x2f
struct ipmi_rs *
ipmi_sdr_get_sensor_reading(struct ipmi_intf * intf, unsigned char sensor)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = GET_SENSOR_READING;
req.msg.data = &sensor;
req.msg.data_len = sizeof(sensor);
rsp = intf->sendrecv(intf, &req);
return rsp;
}
const char *
ipmi_sdr_get_sensor_type_desc(const unsigned char type)
{
if (type <= SENSOR_TYPE_MAX)
return sensor_type_desc[type];
if (type < 0xc0)
return "reserved";
return "OEM reserved";
}
const char *
ipmi_sdr_get_status(unsigned char stat)
{
/* cr = critical
* nc = non-critical
* us = unspecified
* nr = non-recoverable
* ok = ok
*/
if (stat & (SDR_SENSOR_STAT_LO_NR | SDR_SENSOR_STAT_HI_NR))
return "nr";
else if (stat & (SDR_SENSOR_STAT_LO_CR | SDR_SENSOR_STAT_HI_CR))
return "cr";
else if (stat & (SDR_SENSOR_STAT_LO_NC | SDR_SENSOR_STAT_HI_NC))
return "nc";
else
return "ok";
}
static struct sdr_get_rs *
ipmi_sdr_get_header(struct ipmi_intf * intf, unsigned short reserve_id, unsigned short record_id)
{
struct ipmi_rq req;
struct ipmi_rs * rsp;
struct sdr_get_rq sdr_rq;
static struct sdr_get_rs sdr_rs;
memset(&sdr_rq, 0, sizeof(sdr_rq));
sdr_rq.reserve_id = reserve_id;
sdr_rq.id = record_id;
sdr_rq.offset = 0;
sdr_rq.length = 5; /* only get the header */
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR;
req.msg.data = (unsigned char *)&sdr_rq;
req.msg.data_len = sizeof(sdr_rq);
rsp = intf->sendrecv(intf, &req);
if (!rsp || !rsp->data_len || rsp->ccode) {
printf("Error getting SDR record id 0x%04x\n", record_id);
return NULL;
}
if (verbose > 1)
printf("SDR record ID : 0x%04x\n", record_id);
memcpy(&sdr_rs, rsp->data, sizeof(sdr_rs));
if (sdr_rs.length == 0) {
printf("Error in SDR record id 0x%04x: invalid length %d\n",
record_id, sdr_rs.length);
return NULL;
}
if (verbose > 1) {
printf("SDR record type : 0x%02x\n", sdr_rs.type);
printf("SDR record next : %d\n", sdr_rs.next);
printf("SDR record bytes: %d\n", sdr_rs.length);
}
return &sdr_rs;
}
struct sdr_get_rs *
ipmi_sdr_get_next_header(struct ipmi_intf * intf, struct ipmi_sdr_iterator * itr)
{
struct sdr_get_rs *header;
if (itr->next == 0xffff)
return NULL;
if (!(header = ipmi_sdr_get_header(intf, itr->reservation, itr->next)))
return NULL;
itr->next = header->next;
return header;
}
void ipmi_sdr_print_sensor_full(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
{
char sval[16], unitstr[16], desc[17];
int i=0, validread=1, do_unit=1;
float val;
struct ipmi_rs * rsp;
unsigned char min_reading, max_reading;
if (!sensor)
return;
/* only handle linear sensors (for now) */
if (sensor->linearization) {
printf("non-linear!\n");
return;
}
memset(desc, 0, sizeof(desc));
memcpy(desc, sensor->id_string, 16);
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp) {
printf("Error reading sensor %s (#%02x)\n", desc, sensor->keys.sensor_num);
return;
}
if (rsp->ccode) {
if (rsp && rsp->ccode == 0xcb) {
/* sensor not found */
val = 0.0;
validread = 0;
} else {
printf("Error reading sensor %s (#%02x), %s\n",
desc,
sensor->keys.sensor_num,
val2str(rsp->ccode, completion_code_vals));
return;
}
} else {
if (rsp->data[1] & READING_UNAVAILABLE) {
val = 0.0;
validread = 0;
}
else if (!(rsp->data[1] & SCANNING_DISABLED))
return; /* Sensor Scanning Disabled */
else
/* convert RAW reading into units */
val = rsp->data[0] ? sdr_convert_sensor_reading(sensor, rsp->data[0]) : 0;
}
if (do_unit && validread) {
memset(unitstr, 0, sizeof(unitstr));
/* determine units with possible modifiers */
switch (sensor->unit.modifier) {
case 2:
i += snprintf(unitstr, sizeof(unitstr), "%s * %s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 1:
i += snprintf(unitstr, sizeof(unitstr), "%s/%s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 0:
default:
i += snprintf(unitstr, sizeof(unitstr), "%s",
unit_desc[sensor->unit.type.base]);
break;
}
}
if (csv_output)
{
/*
* print sensor name, reading, unit, state
*/
printf("%s,", sensor->id_code ? desc : NULL);
if (validread) {
printf("%.*f,", (val==(int)val) ? 0 : 3, val);
printf("%s,%s", do_unit ? unitstr : "",
ipmi_sdr_get_status(rsp->data[2]));
} else
printf(",,%s", ipmi_sdr_get_status(rsp->data[2]));
if (verbose)
{
printf(",%d.%d,%s,%s,",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals),
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
#define CSV_PRINT_HELPER(flag,value) \
if(flag) printf("%.3f,", sdr_convert_sensor_reading(sensor, value)); else printf(",");
CSV_PRINT_HELPER(sensor->analog_flag.nominal_read, sensor->nominal_read);
CSV_PRINT_HELPER(sensor->analog_flag.normal_min, sensor->normal_min);
CSV_PRINT_HELPER(sensor->analog_flag.normal_max, sensor->normal_max);
CSV_PRINT_HELPER(sensor->mask.threshold.set & 0x20, sensor->threshold.upper.non_recover);
CSV_PRINT_HELPER(sensor->mask.threshold.set & 0x10, sensor->threshold.upper.critical);
CSV_PRINT_HELPER(sensor->mask.threshold.set & 0x08, sensor->threshold.upper.non_critical);
CSV_PRINT_HELPER(sensor->mask.threshold.set & 0x04, sensor->threshold.lower.non_recover);
CSV_PRINT_HELPER(sensor->mask.threshold.set & 0x02, sensor->threshold.lower.critical);
CSV_PRINT_HELPER(sensor->mask.threshold.set & 0x01, sensor->threshold.lower.non_critical);
printf ("%.3f,%.3f",
sdr_convert_sensor_reading(sensor, sensor->sensor_min),
sdr_convert_sensor_reading(sensor, sensor->sensor_max));
}
printf("\n");
}
else
{
if (!verbose)
{
/*
* print sensor name, reading, state
*/
printf("%-16s | ",
sensor->id_code ? desc : NULL);
i = 0;
memset(sval, 0, sizeof(sval));
if (validread) {
i += snprintf(sval, sizeof(sval), "%.*f %s",
(val==(int)val) ? 0 : 2, val,
do_unit ? unitstr : "");
} else {
i += snprintf(sval, sizeof(sval), "no reading ");
}
printf("%s", sval);
i--;
for (; i<sizeof(sval); i++)
printf(" ");
printf(" | ");
printf("%s", validread ? ipmi_sdr_get_status(rsp->data[2]) : "ns");
printf("\n");
}
else
{
printf("Sensor ID : %s (0x%x)\n",
sensor->id_code ? desc : NULL, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d (%s)\n",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals));
if (sensor->unit.analog != 3) { /* analog */
printf(" Sensor Type (Analog) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf(" Sensor Reading : ");
if (validread) {
#if WORDS_BIGENDIAN
unsigned raw_tol = sensor->mtol & 0x3f;
#else
unsigned raw_tol = (sensor->mtol & 0x3f00) >> 8;
#endif
float tol = sdr_convert_sensor_reading(sensor, raw_tol * 2);
printf("%.*f (+/- %.*f) %s\n",
(val==(int)val) ? 0 : 3,
val,
(tol==(int)tol) ? 0 : 3,
tol,
unitstr);
} else
printf("not present\n");
printf(" Status : %s\n",
ipmi_sdr_get_status(rsp->data[2]));
if (sensor->analog_flag.nominal_read)
printf(" Nominal Reading : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->nominal_read));
else
printf(" Nominal Reading : Unspecified\n");
if (sensor->analog_flag.normal_min)
printf(" Normal Minimum : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->normal_min));
else
printf(" Normal Minimum : Unspecified\n");
if (sensor->analog_flag.normal_max)
printf(" Normal Maximum : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->normal_max));
else
printf(" Normal Maximum : Unspecified\n");
if (sensor->sensor.init.thresholds &&
(sensor->mask.threshold.set & 0x20))
printf(" Upper non-recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.non_recover));
else
printf(" Upper non-recoverable : Unspecified\n");
if (sensor->sensor.init.thresholds &&
(sensor->mask.threshold.set & 0x10))
printf(" Upper critical : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.critical));
else
printf(" Upper critical : Unspecified\n");
if (sensor->sensor.init.thresholds &&
(sensor->mask.threshold.set & 0x08))
printf(" Upper non-critical : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.upper.non_critical));
else
printf(" Upper non-critical : Unspecified\n");
if (sensor->sensor.init.thresholds &&
(sensor->mask.threshold.set & 0x04))
printf(" Lower non-recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.non_recover));
else
printf(" Lower non-recoverable : Unspecified\n");
if (sensor->sensor.init.thresholds &&
(sensor->mask.threshold.set & 0x02))
printf(" Lower critical : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.critical));
else
printf(" Lower critical : Unspecified\n");
if (sensor->sensor.init.thresholds &&
(sensor->mask.threshold.set & 0x01))
printf(" Lower non-critical : %.3f\n",
sdr_convert_sensor_reading(sensor, sensor->threshold.lower.non_critical));
else
printf(" Lower non-critical : Unspecified\n");
min_reading = (unsigned char)sdr_convert_sensor_reading(sensor, sensor->sensor_min);
if ((sensor->unit.analog == 0 && sensor->sensor_min == 0x00) ||
(sensor->unit.analog == 1 && sensor->sensor_min == 0xff) ||
(sensor->unit.analog == 2 && sensor->sensor_min == 0x80))
printf(" Minimum sensor range : Unspecified\n");
else
printf(" Minimum sensor range : %.3f\n", (float)min_reading);
max_reading = (unsigned char)sdr_convert_sensor_reading(sensor, sensor->sensor_max);
if ((sensor->unit.analog == 0 && sensor->sensor_max == 0xff) ||
(sensor->unit.analog == 1 && sensor->sensor_max == 0x00) ||
(sensor->unit.analog == 2 && sensor->sensor_max == 0x7f))
printf(" Maximum sensor range : Unspecified\n");
else
printf(" Maximum sensor range : %.3f\n", (float)max_reading);
printf(" Event Message Control : ");
switch (sensor->sensor.capabilities.event_msg) {
case 0:
printf("Per-threshold or discrete-state event\n");
break;
case 1:
printf("Entire Sensor Only\n");
break;
case 2:
printf("Global Disable Only\n");
break;
case 3:
printf("No Events From Sensor\n");
break;
}
} else { /* discrete */
printf(" Sensor Type (Discrete): %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf(" Sensor Reading : ");
if (validread)
printf("%xh\n", (unsigned int)val);
else
printf("not present\n");
ipmi_sdr_print_discrete_state(sensor->sensor.type, sensor->event_type, rsp->data[2]);
}
printf("\n");
}
}
}
static inline int get_offset(unsigned char x)
{
int i;
for (i=0; i<8; i++)
if (x>>i == 1)
return i;
return 0;
}
/* print out list of asserted states for a discrete sensor
* @sensor_type : sensor type code
* @event_type : event type code
* @state : mask of asserted states
*/
void ipmi_sdr_print_discrete_state(unsigned char sensor_type,
unsigned char event_type,
unsigned char state)
{
unsigned char typ;
struct ipmi_event_sensor_types *evt;
int pre = 0;
if (state == 0)
return;
if (event_type == 0x6f) {
evt = sensor_specific_types;
typ = sensor_type;
} else {
evt = generic_event_types;
typ = event_type;
}
printf(" States Asserted : ");
for (evt; evt->type != NULL; evt++) {
if (evt->code == typ && ((1<<evt->offset) & state)) {
if (pre)
printf(" ");
printf("%s\n", evt->desc);
pre = 1;
}
}
}
void ipmi_sdr_print_sensor_compact(struct ipmi_intf * intf,
struct sdr_record_compact_sensor * sensor)
{
struct ipmi_rs * rsp;
char desc[17];
if (!sensor)
return;
memset(desc, 0, sizeof(desc));
memcpy(desc, sensor->id_string, 16);
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp) {
printf("Error reading sensor %d\n", sensor->keys.sensor_num);
return;
}
if (rsp->ccode !=0 && rsp->ccode != 0xcd) {
printf("Error reading sensor %d, %s\n",
sensor->keys.sensor_num,
val2str(rsp->ccode, completion_code_vals));
return;
}
if (rsp->ccode) {
if (verbose > 1)
printf("Invalid ccode: %x\n", rsp->ccode);
return;
}
if (!(rsp->data[1] & 0x80)) {
if (verbose > 1)
printf("Sensor %x scanning disabled\n", sensor->keys.sensor_num);
return; /* sensor scanning disabled */
}
if (verbose) {
printf("Sensor ID : %s (0x%x)\n",
sensor->id_code ? desc : NULL, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d (%s)\n",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals));
printf(" Sensor Type (Discrete): %s\n", ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
if (verbose > 1) {
printf(" Event Type Code : 0x%02x\n", sensor->event_type);
printbuf(rsp->data, rsp->data_len, "COMPACT SENSOR READING");
}
ipmi_sdr_print_discrete_state(sensor->sensor.type, sensor->event_type, rsp->data[2]);
printf("\n");
}
else {
char * state;
char temp[18];
if ((rsp->ccode == 0xcd) || (rsp->data[1] & READING_UNAVAILABLE)) {
state = csv_output ? "Not Readable" : "Not Readable ";
} else {
switch (sensor->sensor.type) {
case 0x07: /* processor */
if (rsp->data[2] & 0x80)
state = csv_output ? "Present" : "Present ";
else
state = csv_output ? "Not Present" : "Not Present ";
break;
case 0x10: /* event logging disabled */
if (rsp->data[2] & 0x10)
state = csv_output ? "Log Full" : "Log Full ";
else if (rsp->data[2] & 0x04)
state = csv_output ? "Log Clear" : "Log Clear ";
else
{
sprintf(temp, "0x%02x", rsp->data[2]);
state = temp;
}
break;
case 0x21: /* slot/connector */
if (rsp->data[2] & 0x04)
state = csv_output ? "Installed" : "Installed ";
else
state = csv_output ? "Not Installed" : "Not Installed ";
break;
default:
{
sprintf(temp, "0x%02x", rsp->data[2]);
state = temp;
}
break;
}
}
if (csv_output)
printf("%s,", sensor->id_code ? desc : NULL);
else
printf("%-16s | ", sensor->id_code ? desc : NULL);
if (!rsp->ccode) {
if (csv_output)
printf("%s,%s\n", state, (rsp->data[1] & READING_UNAVAILABLE) ? "ns" : "ok");
else
printf("%-17s | %s\n", state, (rsp->data[1] & READING_UNAVAILABLE) ? "ns" : "ok");
} else {
if (csv_output)
printf("%s,ok\n", state);
else
printf("%-17s | ok\n", state);
}
}
}
void ipmi_sdr_print_sensor_eventonly(struct ipmi_intf * intf,
struct sdr_record_eventonly_sensor * sensor)
{
char desc[17];
if (!sensor)
return;
memset(desc, 0, sizeof(desc));
memcpy(desc, sensor->id_string, 16);
if (verbose) {
printf("Sensor ID : %s (0x%x)\n",
sensor->id_code ? desc : NULL, sensor->keys.sensor_num);
printf("Entity ID : %d.%d (%s)\n",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals));
printf("Sensor Type : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor_type));
if (verbose > 1) {
printf("Event Type Code : 0x%02x\n", sensor->event_type);
}
printf("\n");
}
else {
char * state = "Event-Only ";
if (csv_output)
printf("%s,Event-Only,ns\n", sensor->id_code ? desc : NULL);
else
printf("%-16s | %-17s | ns\n", sensor->id_code ? desc : NULL, state);
}
}
void ipmi_sdr_print_mc_locator(struct ipmi_intf * intf,
struct sdr_record_mc_locator * mc)
{
char desc[17];
memset(desc, 0, sizeof(desc));
memcpy(desc, mc->id_string, 16);
if (!verbose) {
if (csv_output)
printf("%s,", mc->id_code ? desc : NULL);
else
printf("%-16s | ", mc->id_code ? desc : NULL);
printf("%s MC @ %02Xh",
(mc->pwr_state_notif & 0x1) ? "Static" : "Dynamic",
mc->dev_slave_addr);
if (csv_output)
printf(",ok\n");
else
printf(" %s | ok\n", (mc->pwr_state_notif & 0x1) ? " " : "");
return;
}
printf("Device ID : %s\n", mc->id_string);
printf("Entity ID : %d.%d (%s)\n",
mc->entity.id, mc->entity.instance,
val2str(mc->entity.id, entity_id_vals));
printf("Device Slave Address : %02Xh\n", mc->dev_slave_addr);
printf("Channel Number : %01Xh\n", mc->channel_num);
printf("ACPI System P/S Notif : %sRequired\n",
(mc->pwr_state_notif & 0x4) ? "" : "Not ");
printf("ACPI Device P/S Notif : %sRequired\n",
(mc->pwr_state_notif & 0x2) ? "" : "Not ");
printf("Controller Presence : %s\n",
(mc->pwr_state_notif & 0x1) ? "Static" : "Dynamic");
printf("Logs Init Agent Errors : %s\n",
(mc->global_init & 0x8) ? "Yes" : "No");
printf("Event Message Gen : ");
if (!(mc->global_init & 0x3))
printf("Enable\n");
else if ((mc->global_init & 0x3) == 0x1)
printf("Disable\n");
else if ((mc->global_init & 0x3) == 0x2)
printf("Do Not Init Controller\n");
else
printf("Reserved\n");
printf("Device Capabilities\n");
printf(" Chassis Device : %s\n",
(mc->dev_support & 0x80) ? "Yes" : "No");
printf(" Bridge : %s\n",
(mc->dev_support & 0x40) ? "Yes" : "No");
printf(" IPMB Event Generator : %s\n",
(mc->dev_support & 0x20) ? "Yes" : "No");
printf(" IPMB Event Receiver : %s\n",
(mc->dev_support & 0x10) ? "Yes" : "No");
printf(" FRU Inventory Device : %s\n",
(mc->dev_support & 0x08) ? "Yes" : "No");
printf(" SEL Device : %s\n",
(mc->dev_support & 0x04) ? "Yes" : "No");
printf(" SDR Repository : %s\n",
(mc->dev_support & 0x02) ? "Yes" : "No");
printf(" Sensor Device : %s\n",
(mc->dev_support & 0x01) ? "Yes" : "No");
printf("\n");
}
void ipmi_sdr_print_fru_locator(struct ipmi_intf * intf,
struct sdr_record_fru_locator * fru)
{
char desc[17];
memset(desc, 0, sizeof(desc));
memcpy(desc, fru->id_string, 16);
if (!verbose) {
if (csv_output)
printf("%s,", fru->id_code ? desc : NULL);
else
printf("%-16s | ", fru->id_code ? desc : NULL);
printf("%s FRU @%02Xh %02x.%x",
(fru->logical) ? "Log" : "Phy",
fru->device_id,
fru->entity.id, fru->entity.instance);
if (csv_output)
printf(",ok\n");
else
printf(" | ok\n");
return;
}
printf("Device ID : %s\n", fru->id_string);
printf("Entity ID : %d.%d (%s)\n",
fru->entity.id, fru->entity.instance,
val2str(fru->entity.id, entity_id_vals));
printf("Device Slave Address : %02Xh\n", fru->dev_slave_addr);
if (fru->logical)
printf("%s: %02Xh\n",
fru->logical ? "Logical FRU Device " :
"Slave Address ",
fru->device_id);
printf("LUN.Bus : %01Xh.%01Xh\n", fru->lun, fru->bus);
printf("Channel Number : %01Xh\n", fru->channel_num);
printf("Device Type.Modifier : %01Xh.%01Xh (%s)\n",
fru->dev_type, fru->dev_type_modifier,
val2str(fru->dev_type << 8 | fru->dev_type_modifier,
entity_device_type_vals));
printf("\n");
}
static
void ipmi_sdr_print_oem(struct ipmi_intf * intf, struct sdr_record_oem * oem)
{
if (!oem || !oem->data_len || !oem->data)
return;
if (verbose > 2)
printbuf(oem->data, oem->data_len, "OEM Record");
/* intel manufacturer id */
if (oem->data[0] == 0x57 && oem->data[1] == 0x01 && oem->data[2] == 0x00) {
switch (oem->data[3]) { /* record sub-type */
case 0x02: /* Power Unit Map */
if (verbose) {
printf("Sensor ID : Power Unit Redundancy (0x%x)\n",
oem->data[4]);
printf("Sensor Type : Intel OEM - Power Unit Map\n");
printf("Redundant Supplies : %d", oem->data[6]);
if (oem->data[5])
printf(" (flags %xh)", oem->data[5]);
printf("\n");
}
switch (oem->data_len) {
case 7: /* SR1300, non-redundant */
if (verbose)
printf("Power Redundancy : No\n");
else if (csv_output)
printf("Power Redundancy,Not Available,nr\n");
else
printf("Power Redundancy | Not Available | nr\n");
break;
case 8: /* SR2300, redundant, PS1 & PS2 present */
if (verbose) {
printf("Power Redundancy : No\n");
printf("Power Supply 2 Sensor : %x\n", oem->data[8]);
} else if (csv_output) {
printf("Power Redundancy,PS@%02xh,nr\n", oem->data[8]);
} else {
printf("Power Redundancy | PS@%02xh | nr\n",
oem->data[8]);
}
case 9: /* SR2300, non-redundant, PSx present */
if (verbose) {
printf("Power Redundancy : Yes\n");
printf("Power Supply Sensor : %x\n", oem->data[7]);
printf("Power Supply Sensor : %x\n", oem->data[8]);
} else if (csv_output) {
printf("Power Redundancy,PS@%02xh + PS@%02xh,ok\n",
oem->data[7], oem->data[8]);
} else {
printf("Power Redundancy | PS@%02xh + PS@%02xh | ok\n",
oem->data[7], oem->data[8]);
}
break;
}
if (verbose)
printf("\n");
break;
case 0x03: /* Fan Speed Control */
break;
case 0x06: /* System Information */
break;
case 0x07: /* Ambient Temperature Fan Speed Control */
break;
default:
if (verbose > 1)
printf("Unknown Intel OEM SDR Record type %02x\n", oem->data[3]);
}
}
}
void ipmi_sdr_print_rawentry(struct ipmi_intf * intf, unsigned char type, unsigned char * raw, int len)
{
switch (type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
ipmi_sdr_print_sensor_full(intf,
(struct sdr_record_full_sensor *) raw);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
ipmi_sdr_print_sensor_compact(intf,
(struct sdr_record_compact_sensor *) raw);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
ipmi_sdr_print_sensor_eventonly(intf,
(struct sdr_record_eventonly_sensor *) raw);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
ipmi_sdr_print_fru_locator(intf,
(struct sdr_record_fru_locator *) raw);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
ipmi_sdr_print_mc_locator(intf,
(struct sdr_record_mc_locator *) raw);
break;
case SDR_RECORD_TYPE_OEM: {
struct sdr_record_oem oem;
oem.data = raw;
oem.data_len = len;
ipmi_sdr_print_oem(intf, (struct sdr_record_oem *)&oem);
break;
}
case SDR_RECORD_TYPE_ENTITY_ASSOC:
case SDR_RECORD_TYPE_DEVICE_ENTITY_ASSOC:
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
case SDR_RECORD_TYPE_MC_CONFIRMATION:
case SDR_RECORD_TYPE_BMC_MSG_CHANNEL_INFO:
break;
}
}
void ipmi_sdr_print_listentry(struct ipmi_intf * intf, struct sdr_record_list * entry)
{
switch (entry->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
ipmi_sdr_print_sensor_full(intf, entry->record.full);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
ipmi_sdr_print_sensor_compact(intf, entry->record.compact);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
ipmi_sdr_print_sensor_eventonly(intf, entry->record.eventonly);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
ipmi_sdr_print_fru_locator(intf, entry->record.fruloc);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
ipmi_sdr_print_mc_locator(intf, entry->record.mcloc);
break;
case SDR_RECORD_TYPE_OEM:
ipmi_sdr_print_oem(intf, entry->record.oem);
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
case SDR_RECORD_TYPE_DEVICE_ENTITY_ASSOC:
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
case SDR_RECORD_TYPE_MC_CONFIRMATION:
case SDR_RECORD_TYPE_BMC_MSG_CHANNEL_INFO:
break;
}
}
void ipmi_sdr_print_sdr(struct ipmi_intf * intf, unsigned char type)
{
struct sdr_get_rs * header;
struct ipmi_sdr_iterator * itr;
if (verbose > 1)
printf("Querying SDR for sensor list\n");
itr = ipmi_sdr_start(intf);
if (!itr) {
printf("Unable to open SDR for reading\n");
return;
}
while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL) {
unsigned char * rec;
if (type != header->type && type != 0xff)
continue;
rec = ipmi_sdr_get_record(intf, header, itr);
if (rec) {
ipmi_sdr_print_rawentry(intf, header->type, rec, header->length);
free(rec);
}
}
ipmi_sdr_end(intf, itr);
}
int
ipmi_sdr_get_reservation (struct ipmi_intf * intf, unsigned short *reserve_id)
{
struct ipmi_rs *rsp;
struct ipmi_rq req;
/* obtain reservation ID */
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR_RESERVE_REPO;
rsp = intf->sendrecv(intf, &req);
if (!rsp || !rsp->data_len || rsp->ccode)
return 0;
*reserve_id = ((struct sdr_reserve_repo_rs *) &(rsp->data))->reserve_id;
if (verbose > 1)
printf("SDR reserveration ID %04x\n", *reserve_id);
return 1;
}
struct ipmi_sdr_iterator *
ipmi_sdr_start(struct ipmi_intf * intf)
{
struct ipmi_sdr_iterator * itr;
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct sdr_repo_info_rs sdr_info;
itr = malloc(sizeof(struct ipmi_sdr_iterator));
if (itr == NULL)
return NULL;
/* get sdr repository info */
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR_REPO_INFO;
rsp = intf->sendrecv(intf, &req);
if (!rsp || !rsp->data_len || rsp->ccode)
{
free (itr);
return NULL;
}
memcpy(&sdr_info, rsp->data, sizeof(sdr_info));
/* byte 1 is SDR version, should be 51h */
if ((sdr_info.version != 0x51) && (sdr_info.version != 0x01)) {
printf("SDR repository version mismatch!\n");
free (itr);
return NULL;
}
itr->total = sdr_info.count;
if (verbose > 1) {
printf("SDR free space: %d\n", sdr_info.free);
printf("SDR records: %d\n", sdr_info.count);
}
if (!ipmi_sdr_get_reservation (intf, &(itr->reservation)))
{
free (itr);
return NULL;
}
itr->next = 0;
return itr;
}
unsigned char *
ipmi_sdr_get_record(struct ipmi_intf * intf, struct sdr_get_rs * header,
struct ipmi_sdr_iterator * itr)
{
struct ipmi_rq req;
struct ipmi_rs * rsp;
struct sdr_get_rq sdr_rq;
unsigned char * data;
int i = 0, len = header->length;
if (len < 1)
return NULL;
if (!(data = malloc(len+1)))
return NULL;
memset(data, 0, len+1);
memset(&sdr_rq, 0, sizeof(sdr_rq));
sdr_rq.reserve_id = itr->reservation;
sdr_rq.id = header->id;
sdr_rq.offset = 0;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR;
req.msg.data = (unsigned char *)&sdr_rq;
req.msg.data_len = sizeof(sdr_rq);
/* read SDR record with partial reads
* because a full read usually exceeds the maximum
* transport buffer size. (completion code 0xca)
*/
while (i < len) {
sdr_rq.length = (len-i < sdr_max_read_len) ? len-i : sdr_max_read_len;
sdr_rq.offset = i+5; /* 5 header bytes */
if (verbose > 1)
printf("getting %d bytes from SDR at offset %d\n",
sdr_rq.length, sdr_rq.offset);
rsp = intf->sendrecv(intf, &req);
if (!rsp) {
free (data);
return NULL;
}
switch (rsp->ccode) {
case 0xca:
/* read too many bytes at once */
sdr_max_read_len = (sdr_max_read_len >> 1) - 1;
continue;
case 0xc5:
/* lost reservation */
if (verbose > 1)
printf("SDR reserveration canceled. "
"Sleeping a bit and retrying...\n");
sleep (rand () & 3);
if (!ipmi_sdr_get_reservation (intf, &(itr->reservation))) {
free (data);
return NULL;
}
sdr_rq.reserve_id = itr->reservation;
continue;
}
if (!rsp->data_len || rsp->ccode) {
free(data);
return NULL;
}
memcpy(data+i, rsp->data+2, sdr_rq.length);
i += sdr_max_read_len;
}
return data;
}
void
ipmi_sdr_end(struct ipmi_intf * intf, struct ipmi_sdr_iterator * itr)
{
free (itr);
}
struct sdr_record_list *
ipmi_sdr_find_sdr_bynumtype(struct ipmi_intf * intf, unsigned char num, unsigned char type)
{
struct sdr_get_rs * header;
struct sdr_record_list * e;
int found = 0;
if (!sdr_list_itr) {
sdr_list_itr = ipmi_sdr_start(intf);
if (!sdr_list_itr) {
printf("Unable to open SDR for reading\n");
return NULL;
}
}
switch (type) {
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
return NULL;
}
/* check what we've already read */
e = sdr_list_head;
while (e) {
switch (e->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
if (e->record.full->keys.sensor_num == num &&
e->record.full->sensor.type == type)
return e;
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (e->record.compact->keys.sensor_num == num &&
e->record.compact->sensor.type == type)
return e;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (e->record.eventonly->keys.sensor_num == num &&
e->record.eventonly->sensor_type == type)
return e;
break;
}
e = e->next;
}
/* now keep looking */
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
unsigned char * rec;
struct sdr_record_list * sdrr;
sdrr = malloc(sizeof(struct sdr_record_list));
if (sdrr == NULL)
break;
memset(sdrr, 0, sizeof(struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (!rec)
continue;
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
sdrr->record.full = (struct sdr_record_full_sensor *)rec;
if (sdrr->record.full->keys.sensor_num == num &&
sdrr->record.full->sensor.type == type)
found = 1;
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.compact = (struct sdr_record_compact_sensor *)rec;
if (sdrr->record.compact->keys.sensor_num == num &&
sdrr->record.compact->sensor.type == type)
found = 1;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *)rec;
if (sdrr->record.eventonly->keys.sensor_num == num &&
sdrr->record.eventonly->sensor_type == type)
found = 1;
break;
default:
free(rec);
continue;
}
if (!sdr_list_head)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
if (found)
return sdrr;
}
return NULL;
}
static void __sdr_list_add(struct sdr_record_list * head, struct sdr_record_list * entry)
{
struct sdr_record_list * e;
struct sdr_record_list * new;
if (!head)
return;
new = malloc(sizeof(struct sdr_record_list));
if (new == NULL)
return;
memcpy(new, entry, sizeof(struct sdr_record_list));
e = head;
while (e->next)
e = e->next;
e->next = new;
new->next = NULL;
}
static void __sdr_list_empty(struct sdr_record_list * head)
{
struct sdr_record_list * e, * f;
e = head;
while (e) {
f = e->next;
free(e);
e = f;
}
head = NULL;
}
/* returns number of records found for this entity */
struct sdr_record_list *
ipmi_sdr_find_sdr_byentity(struct ipmi_intf * intf, struct entity_id * entity)
{
struct sdr_get_rs * header;
struct sdr_record_list * e;
struct sdr_record_list * head;
head = malloc(sizeof(struct sdr_record_list));
if (head == NULL)
return NULL;
memset(head, 0, sizeof(struct sdr_record_list));
if (!sdr_list_itr) {
sdr_list_itr = ipmi_sdr_start(intf);
if (!sdr_list_itr) {
printf("Unable to open SDR for reading\n");
return NULL;
}
}
/* check what we've already read */
e = sdr_list_head;
while (e) {
switch (e->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
if (e->record.full->entity.id == entity->id &&
e->record.full->entity.instance == entity->instance)
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (e->record.compact->entity.id == entity->id &&
e->record.compact->entity.instance == entity->instance)
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (e->record.eventonly->entity.id == entity->id &&
e->record.eventonly->entity.instance == entity->instance)
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
if (e->record.fruloc->entity.id == entity->id &&
e->record.fruloc->entity.instance == entity->instance)
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
if (e->record.mcloc->entity.id == entity->id &&
e->record.mcloc->entity.instance == entity->instance)
__sdr_list_add(head, e);
break;
}
e = e->next;
}
/* now keep looking */
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
unsigned char * rec;
struct sdr_record_list * sdrr;
sdrr = malloc(sizeof(struct sdr_record_list));
if (sdrr == NULL)
break;
memset(sdrr, 0, sizeof(struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (!rec)
continue;
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
sdrr->record.full = (struct sdr_record_full_sensor *)rec;
if (sdrr->record.full->entity.id == entity->id &&
sdrr->record.full->entity.instance == entity->instance)
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.compact = (struct sdr_record_compact_sensor *)rec;
if (sdrr->record.compact->entity.id == entity->id &&
sdrr->record.compact->entity.instance == entity->instance)
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *)rec;
if (sdrr->record.eventonly->entity.id == entity->id &&
sdrr->record.eventonly->entity.instance == entity->instance)
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc = (struct sdr_record_fru_locator *)rec;
if (sdrr->record.fruloc->entity.id == entity->id &&
sdrr->record.fruloc->entity.instance == entity->instance)
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc = (struct sdr_record_mc_locator *)rec;
if (sdrr->record.mcloc->entity.id == entity->id &&
sdrr->record.mcloc->entity.instance == entity->instance)
__sdr_list_add(head, sdrr);
break;
default:
free(rec);
continue;
}
if (!sdr_list_head)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
}
return head;
}
struct sdr_record_list *
ipmi_sdr_find_sdr_byid(struct ipmi_intf * intf, char * id)
{
struct sdr_get_rs * header;
struct sdr_record_list * e;
int found = 0;
if (!sdr_list_itr) {
sdr_list_itr = ipmi_sdr_start(intf);
if (!sdr_list_itr) {
printf("Unable to open SDR for reading\n");
return NULL;
}
}
/* check what we've already read */
e = sdr_list_head;
while (e) {
switch (e->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
if (!strncmp(e->record.full->id_string, id,
e->record.full->id_code & 0x1f))
return e;
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (!strncmp(e->record.compact->id_string, id,
e->record.compact->id_code & 0x1f))
return e;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (!strncmp(e->record.eventonly->id_string, id,
e->record.eventonly->id_code & 0x1f))
return e;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
if (!strncmp(e->record.fruloc->id_string, id,
e->record.fruloc->id_code & 0x1f))
return e;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
if (!strncmp(e->record.mcloc->id_string, id,
e->record.mcloc->id_code & 0x1f))
return e;
break;
}
e = e->next;
}
/* now keep looking */
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
unsigned char * rec;
struct sdr_record_list * sdrr;
sdrr = malloc(sizeof(struct sdr_record_list));
if (sdrr == NULL)
break;
memset(sdrr, 0, sizeof(struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (!rec)
continue;
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
sdrr->record.full = (struct sdr_record_full_sensor *)rec;
if (!strncmp(sdrr->record.full->id_string, id,
sdrr->record.full->id_code & 0x1f))
found = 1;
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.compact = (struct sdr_record_compact_sensor *)rec;
if (!strncmp(sdrr->record.compact->id_string, id,
sdrr->record.compact->id_code & 0x1f))
found = 1;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *)rec;
if (!strncmp(sdrr->record.eventonly->id_string, id,
sdrr->record.eventonly->id_code & 0x1f))
found = 1;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc = (struct sdr_record_fru_locator *)rec;
if (!strncmp(sdrr->record.fruloc->id_string, id,
sdrr->record.fruloc->id_code & 0x1f))
found = 1;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc = (struct sdr_record_mc_locator *)rec;
if (!strncmp(sdrr->record.mcloc->id_string, id,
sdrr->record.mcloc->id_code & 0x1f))
found = 1;
break;
default:
free(rec);
continue;
}
if (!sdr_list_head)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
if (found)
return sdrr;
}
return NULL;
}
void ipmi_sdr_list_empty(struct ipmi_intf * intf)
{
struct sdr_record_list *list, *next;
ipmi_sdr_end(intf, sdr_list_itr);
list = sdr_list_head;
while (list) {
switch (list->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
if (list->record.full)
free(list->record.full);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (list->record.compact)
free(list->record.compact);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (list->record.eventonly)
free(list->record.eventonly);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
if (list->record.fruloc)
free(list->record.fruloc);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
if (list->record.mcloc)
free(list->record.mcloc);
break;
}
next = list->next;
free(list);
list = next;
}
sdr_list_head = NULL;
sdr_list_tail = NULL;
sdr_list_itr = NULL;
}
/*
* ipmi_sdr_get_info
*
* Execute the GET SDR REPOSITORY INFO command, and populate the sdr_info
* structure.
* See section 33.9 of the IPMI v2 specification for details
*
* returns 0 on success
* -1 on transport error
* > 0 for other errors
*/
int
ipmi_sdr_get_info(struct ipmi_intf * intf,
struct get_sdr_repository_info_rsp * sdr_repository_info)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE; // 0x0A
req.msg.cmd = IPMI_GET_SDR_REPOSITORY_INFO; // 0x20
req.msg.data = 0;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (!rsp || rsp->ccode)
{
printf("Error:%x Get SDR Repository Info Command\n",
rsp ? rsp->ccode : 0);
return (rsp? rsp->ccode : -1);
}
memcpy(sdr_repository_info,
rsp->data,
min(sizeof(struct get_sdr_repository_info_rsp),rsp->data_len));
return 0;
}
static char *
ipmi_sdr_timestamp(uint32_t stamp)
{
static char tbuf[40];
time_t s = (time_t)stamp;
memset(tbuf, 0, 40);
if (stamp)
strftime(tbuf, sizeof(tbuf), "%m/%d/%Y %H:%M:%S", localtime(&s));
return tbuf;
}
/*
* ipmi_sdr_print_info
*
* Display the return data of the GET SDR REPOSITORY INFO command
* See section 33.9 of the IPMI v2 specification for details
*
* returns 0 on success
* -1 on error
*/
int
ipmi_sdr_print_info(struct ipmi_intf * intf)
{
uint32_t timestamp;
uint16_t free_space;
struct get_sdr_repository_info_rsp sdr_repository_info;
if (ipmi_sdr_get_info(intf, &sdr_repository_info) != 0)
return -1;
printf("SDR Version : 0x%x\n",
sdr_repository_info.sdr_version);
printf("Record Count : %d\n",
(sdr_repository_info.record_count_msb << 8) |
sdr_repository_info.record_count_lsb);
free_space =
(sdr_repository_info.free_space[0] << 8) |
sdr_repository_info.free_space[1];
printf("Free Space : ");
switch (free_space)
{
case 0x0000:
printf("none (full)\n");
break;
case 0xFFFF:
printf("unspecified\n");
break;
case 0xFFFE:
printf("> 64Kb - 2 bytes\n");
break;
default:
printf("%d bytes\n", free_space);
break;
}
timestamp =
(sdr_repository_info.most_recent_addition_timestamp[3] << 24) |
(sdr_repository_info.most_recent_addition_timestamp[2] << 16) |
(sdr_repository_info.most_recent_addition_timestamp[1] << 8) |
sdr_repository_info.most_recent_addition_timestamp[0];
printf("Most recent Addition : %s\n",
ipmi_sdr_timestamp(timestamp));
timestamp =
(sdr_repository_info.most_recent_erase_timestamp[3] << 24) |
(sdr_repository_info.most_recent_erase_timestamp[2] << 16) |
(sdr_repository_info.most_recent_erase_timestamp[1] << 8) |
sdr_repository_info.most_recent_erase_timestamp[0];
printf("Most recent Erase : %s\n", ipmi_sdr_timestamp(timestamp));
printf("SDR overflow : %s\n",
(sdr_repository_info.overflow_flag? "yes": "no"));
printf("SDR Repository Update Support : ");
switch (sdr_repository_info.modal_update_support)
{
case 0:
printf("unspecified\n");
break;
case 1:
printf("non-modal\n");
break;
case 2:
printf("modal\n");
break;
case 3:
printf("modal and non-modal\n");
break;
default:
printf("error in response\n");
break;
}
printf("Delete SDR supported : %s\n",
sdr_repository_info.delete_sdr_supported? "yes" : "no");
printf("Partial Add SDR supported : %s\n",
sdr_repository_info.partial_add_sdr_supported? "yes" : "no");
printf("Reserve SDR repository supported : %s\n",
sdr_repository_info.reserve_sdr_repository_supported? "yes" : "no");
printf("SDR Repository Alloc info supported : %s\n",
sdr_repository_info.delete_sdr_supported? "yes" : "no");
return 0;
}
static int ipmi_sdr_dump_bin(struct ipmi_intf * intf, const char * ofile)
{
struct sdr_get_rs * header;
struct ipmi_sdr_iterator * itr;
FILE * fp;
fp = ipmi_open_file_write(ofile);
if (!fp) {
return -1;
}
/* open connection to SDR */
itr = ipmi_sdr_start(intf);
if (!itr) {
printf("Unable to open SDR for reading\n");
fclose(fp);
return -1;
}
printf("Dumping Sensor Data Repository to '%s'\n", ofile);
/* go through sdr records */
while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL) {
int r;
unsigned char h[5];
unsigned char * rec;
if (verbose)
printf("Record ID %04x (%d bytes)\n", header->id, header->length);
rec = ipmi_sdr_get_record(intf, header, itr);
if (!rec) continue;
/* build and write sdr header */
h[0] = header->id & 0xff;
h[1] = (header->id >> 8) & 0xff;
h[2] = header->version;
h[3] = header->type;
h[4] = header->length;
r = fwrite(h, 1, 5, fp);
if (r != 5) {
printf("Error writing header to output file %s\n", ofile);
break;
}
/* write sdr entry */
r = fwrite(rec, 1, header->length, fp);
if (r != header->length) {
printf("Error writing %d record bytes to output file %s\n",
header->length, ofile);
break;
}
}
fclose(fp);
return 0;
}
void ipmi_sdr_print_entity(struct ipmi_intf * intf, char * entitystr)
{
struct sdr_record_list * list, * entry;
struct entity_id entity;
int count, i;
unsigned char id, instance;
if (sscanf(entitystr, "%u.%u", &id, &instance) != 2) {
printf("Invalid entity: %s\n", entitystr);
return;
}
entity.id = id;
entity.instance = instance;
list = ipmi_sdr_find_sdr_byentity(intf, &entity);
for (entry=list; entry; entry=entry->next) {
ipmi_sdr_print_listentry(intf, entry);
}
__sdr_list_empty(list);
}
int ipmi_sdr_main(struct ipmi_intf * intf, int argc, char ** argv)
{
srand (time (NULL));
if (!argc)
ipmi_sdr_print_sdr(intf, 0xff);
else if (!strncmp(argv[0], "help", 4)) {
printf("SDR Commands: list [all|full|compact|event|mcloc|fru]\n");
printf(" all All SDR Records\n");
printf(" full Full Sensor Record\n");
printf(" compact Compact Sensor Record\n");
printf(" event Event-Only Sensor Record\n");
printf(" mcloc Management Controller Locator Record\n");
printf(" fru FRU Locator Record\n");
printf(" info\n");
}
else if (!strncmp(argv[0], "list", 4)) {
if (argc > 1) {
if (!strncmp(argv[1], "all", 3))
ipmi_sdr_print_sdr(intf, 0xff);
else if (!strncmp(argv[1], "full", 4))
ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_FULL_SENSOR);
else if (!strncmp(argv[1], "compact", 7))
ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_COMPACT_SENSOR);
else if (!strncmp(argv[1], "event", 5))
ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_EVENTONLY_SENSOR);
else if (!strncmp(argv[1], "mcloc", 5))
ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_MC_DEVICE_LOCATOR);
else if (!strncmp(argv[1], "fru", 3))
ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR);
else
printf("usage: sdr list [all|full|compact|event|mcloc|fru]\n");
} else {
ipmi_sdr_print_sdr(intf, 0xff);
}
}
else if (!strncmp(argv[0], "entity", 6)) {
ipmi_sdr_print_entity(intf, argv[1]);
}
else if (!strncmp(argv[0], "info", 4)) {
ipmi_sdr_print_info(intf);
}
else if (!strncmp(argv[0], "dump", 4)) {
if (argc < 2)
printf("usage: sdr dump <filename>\n");
else
ipmi_sdr_dump_bin(intf, argv[1]);
} else {
printf("Invalid SDR command: %s\n", argv[0]);
}
return 0;
}