ipmitool/ipmitool/lib/ipmi_sensor.c

764 lines
24 KiB
C

/*
* Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind.
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
* SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
* SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA,
* OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
* PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
* LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,
* EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that this software is not designed or intended for use
* in the design, construction, operation or maintenance of any nuclear
* facility.
*/
#include <string.h>
#include <math.h>
#include <ipmitool/ipmi.h>
#include <ipmitool/ipmi_intf.h>
#include <ipmitool/ipmi_sdr.h>
#include <ipmitool/ipmi_sensor.h>
extern int verbose;
#define READING_UNAVAILABLE 0x20
static
struct ipmi_rs *
ipmi_sensor_get_sensor_thresholds(struct ipmi_intf * intf, unsigned char sensor)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = GET_SENSOR_THRESHOLDS;
req.msg.data = &sensor;
req.msg.data_len = sizeof(sensor);
rsp = intf->sendrecv(intf, &req);
return rsp;
}
static
struct ipmi_rs *
ipmi_sensor_set_sensor_thresholds(struct ipmi_intf * intf,
unsigned char sensor,
unsigned char threshold,
unsigned char setting)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
static struct sensor_set_thresh_rq set_thresh_rq;
memset(&set_thresh_rq, 0, sizeof(set_thresh_rq));
set_thresh_rq.sensor_num = sensor;
set_thresh_rq.set_mask = threshold;
if (threshold == UPPER_NON_RECOV_SPECIFIED)
set_thresh_rq.upper_non_recov = setting;
else if (threshold == UPPER_CRIT_SPECIFIED)
set_thresh_rq.upper_crit = setting;
else if (threshold == UPPER_NON_CRIT_SPECIFIED)
set_thresh_rq.upper_non_crit = setting;
else if (threshold == LOWER_NON_CRIT_SPECIFIED)
set_thresh_rq.lower_non_crit = setting;
else if (threshold == LOWER_CRIT_SPECIFIED)
set_thresh_rq.lower_crit = setting;
else if (threshold == LOWER_NON_RECOV_SPECIFIED)
set_thresh_rq.lower_non_recov = setting;
else
return NULL;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = SET_SENSOR_THRESHOLDS;
req.msg.data = (unsigned char *)&set_thresh_rq;
req.msg.data_len = sizeof(set_thresh_rq);
rsp = intf->sendrecv(intf, &req);
return rsp;
}
static void
ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
{
char id[17];
char * unitstr = "discrete";
int validread=1;
unsigned char val = 0;
struct ipmi_rs * rsp;
if (!sensor)
return;
memset(id, 0, sizeof(id));
memcpy(id, sensor->id_string, 16);
/*
* Get current reading
*/
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp)
{
printf("Error reading sensor %s (#%02x)\n", id, sensor->keys.sensor_num);
return;
}
else if (rsp->ccode || (rsp->data[1] & READING_UNAVAILABLE))
{
validread = 0;
}
else
{
/* convert RAW reading into units */
val = rsp->data[0];
}
if (csv_output)
{
}
else
{
if (!verbose)
{
/* output format
* id value units status thresholds....
*/
printf("%-16s ", id);
if (validread)
{
printf("| 0x%-8x | %-10s | 0x%02x%02x",
val,
unitstr,
rsp->data[2],
rsp->data[3]);
}
else
{
printf("| %-10s | %-10s | %-6s",
"na",
unitstr,
"na");
}
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
printf("\n");
}
else
{
printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num);
printf("Sensor Type (Discrete) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf("Sensor Reading : ");
if (validread)
{
printf("0x%x\n", val);
}
else
{
printf("not present\n\n");
return;
}
printf("States Asserted : ");
if (!rsp->data[2] && !rsp->data[3])
printf("none");
else
{
if (rsp->data[2] & STATE_0_ASSERTED)
printf("%d ", 0);
if (rsp->data[2] & STATE_1_ASSERTED)
printf("%d ", 1);
if (rsp->data[2] & STATE_2_ASSERTED)
printf("%d ", 2);
if (rsp->data[2] & STATE_3_ASSERTED)
printf("%d ", 3);
if (rsp->data[2] & STATE_4_ASSERTED)
printf("%d ", 4);
if (rsp->data[2] & STATE_5_ASSERTED)
printf("%d ", 5);
if (rsp->data[2] & STATE_6_ASSERTED)
printf("%d ", 6);
if (rsp->data[2] & STATE_7_ASSERTED)
printf("%d ", 7);
if (rsp->data[3] & STATE_8_ASSERTED)
printf("%d ", 8);
if (rsp->data[3] & STATE_9_ASSERTED)
printf("%d ", 9);
if (rsp->data[3] & STATE_10_ASSERTED)
printf("%d ", 10);
if (rsp->data[3] & STATE_11_ASSERTED)
printf("%d ", 11);
if (rsp->data[3] & STATE_12_ASSERTED)
printf("%d ", 12);
if (rsp->data[3] & STATE_13_ASSERTED)
printf("%d ", 13);
if (rsp->data[3] & STATE_14_ASSERTED)
printf("%d ", 14);
}
printf("\n\n");
}
}
}
static void
ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
{
char unitstr[16], id[17];
int i=0, validread=1, thresh_available = 1;
float val = 0.0;
struct ipmi_rs * rsp;
char * status = NULL;
if (!sensor)
return;
/* only handle linear sensors (for now) */
if (sensor->linearization) {
printf("non-linear!\n");
return;
}
memset(id, 0, sizeof(id));
memcpy(id, sensor->id_string, 16);
/*
* Get current reading
*/
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp)
{
printf("Error reading sensor %s (#%02x)\n", id, sensor->keys.sensor_num);
return;
}
else if (rsp->ccode || (rsp->data[1] & READING_UNAVAILABLE))
{
validread = 0;
}
else
{
/* convert RAW reading into units */
val = rsp->data[0] ? sdr_convert_sensor_reading(sensor, rsp->data[0]) : 0;
status = (char*)ipmi_sdr_get_status(rsp->data[2]);
}
/*
* Figure out units
*/
memset(unitstr, 0, sizeof(unitstr));
switch (sensor->unit.modifier)
{
case 2:
i += snprintf(unitstr, sizeof(unitstr), "%s * %s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 1:
i += snprintf(unitstr, sizeof(unitstr), "%s/%s",
unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]);
break;
case 0:
default:
i += snprintf(unitstr, sizeof(unitstr), "%s",
unit_desc[sensor->unit.type.base]);
break;
}
/*
* Get sensor thresholds
*/
rsp = ipmi_sensor_get_sensor_thresholds(intf, sensor->keys.sensor_num);
if (!rsp)
thresh_available = 0;
if (csv_output)
{
}
else
{
if (!verbose)
{
/* output format
* id value units status thresholds....
*/
printf("%-16s ", id);
if (validread)
{
printf("| %-10.3f | %-10s | %-6s",
val,
unitstr,
status ? : "");
}
else
{
printf("| %-10s | %-10s | %-6s",
"na",
unitstr,
"na");
}
if (thresh_available)
{
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[3]));
else
printf("| %-10s", "na");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[2]));
else
printf("| %-10s", "na");
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[1]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[4]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[5]));
else
printf("| %-10s", "na");
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[6]));
else
printf("| %-10s", "na");
}
else
{
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
}
printf("\n");
}
else
{
printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num);
printf("Sensor Type (Analog) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf("Sensor Reading : ");
if (validread) {
#if WORDS_BIGENDIAN
unsigned raw_tol = sensor->mtol & 0x3f;
#else
unsigned raw_tol = (sensor->mtol & 0x3f00) >> 8;
#endif
float tol = sdr_convert_sensor_reading(sensor, raw_tol * 2);
printf("%.*f (+/- %.*f) %s\n",
(val==(int)val) ? 0 : 3,
val,
(tol==(int)tol) ? 0 : 3,
tol,
unitstr);
printf("Status : %s\n", status ? : "");
if (thresh_available)
{
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)
printf("Lower Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[3]));
else
printf("Lower Non-Recoverable : na\n");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf("Lower Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[2]));
else
printf("Lower Critical : na\n");
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)
printf("Lower Non-Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[1]));
else
printf("Lower Non-Critical : na\n");
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)
printf("Upper Non-Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[4]));
else
printf("Upper Non-Critical : na\n");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf("Upper Critical : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[5]));
else
printf("Upper Critical : na\n");
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)
printf("Upper Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading(sensor, rsp->data[6]));
else
printf("Upper Non-Recoverable : na\n");
}
} else
printf("not present\n");
printf("\n");
}
}
}
void ipmi_sensor_print_full(struct ipmi_intf * intf,
struct sdr_record_full_sensor * sensor)
{
if (sensor->unit.analog != 3)
ipmi_sensor_print_full_analog(intf, sensor);
else
ipmi_sensor_print_full_discrete(intf, sensor);
}
void ipmi_sensor_print_compact(struct ipmi_intf * intf,
struct sdr_record_compact_sensor * sensor)
{
char id[17];
char * unitstr = "discrete";
int validread=1;
unsigned char val = 0;
struct ipmi_rs * rsp;
if (!sensor)
return;
memset(id, 0, sizeof(id));
memcpy(id, sensor->id_string, 16);
/*
* Get current reading
*/
rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num);
if (!rsp)
{
printf("Error reading sensor %s (#%02x)\n", id, sensor->keys.sensor_num);
return;
}
else if (rsp->ccode || (rsp->data[1] & READING_UNAVAILABLE))
{
validread = 0;
}
else
{
/* convert RAW reading into units */
val = rsp->data[0];
}
if (csv_output)
{
}
else
{
if (!verbose)
{
/* output format
* id value units status thresholds....
*/
printf("%-16s ", id);
if (validread)
{
printf("| 0x%-8x | %-10s | 0x%02x%02x",
val,
unitstr,
rsp->data[2],
rsp->data[3]);
}
else
{
printf("| %-10s | %-10s | %-6s",
"na",
unitstr,
"na");
}
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na");
printf("\n");
}
else
{
printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num);
printf("Sensor Type (Discrete) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type));
printf("Sensor Reading : ");
if (validread)
{
printf("0x%04x\n", val);
}
else
{
printf("not present\n\n");
return;
}
printf("States Asserted : ");
if (!rsp->data[2] && !rsp->data[3])
printf("none");
else
{
if (rsp->data[2] & STATE_0_ASSERTED)
printf("%d ", 0);
if (rsp->data[2] & STATE_1_ASSERTED)
printf("%d ", 1);
if (rsp->data[2] & STATE_2_ASSERTED)
printf("%d ", 2);
if (rsp->data[2] & STATE_3_ASSERTED)
printf("%d ", 3);
if (rsp->data[2] & STATE_4_ASSERTED)
printf("%d ", 4);
if (rsp->data[2] & STATE_5_ASSERTED)
printf("%d ", 5);
if (rsp->data[2] & STATE_6_ASSERTED)
printf("%d ", 6);
if (rsp->data[2] & STATE_7_ASSERTED)
printf("%d ", 7);
if (rsp->data[3] & STATE_8_ASSERTED)
printf("%d ", 8);
if (rsp->data[3] & STATE_9_ASSERTED)
printf("%d ", 9);
if (rsp->data[3] & STATE_10_ASSERTED)
printf("%d ", 10);
if (rsp->data[3] & STATE_11_ASSERTED)
printf("%d ", 11);
if (rsp->data[3] & STATE_12_ASSERTED)
printf("%d ", 12);
if (rsp->data[3] & STATE_13_ASSERTED)
printf("%d ", 13);
if (rsp->data[3] & STATE_14_ASSERTED)
printf("%d ", 14);
}
printf("\n\n");
}
}
}
static void
ipmi_sensor_list(struct ipmi_intf * intf)
{
struct sdr_get_rs * header;
struct ipmi_sdr_iterator * itr;
if (verbose > 1)
printf("Querying SDR for sensor list\n");
itr = ipmi_sdr_start(intf);
if (!itr)
{
printf("Unable to open SDRR for reading\n");
return;
}
while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL)
{
unsigned char * rec = ipmi_sdr_get_record(intf, header, itr);
if (!rec)
continue;
switch(header->type)
{
case SDR_RECORD_TYPE_FULL_SENSOR:
ipmi_sensor_print_full(intf, (struct sdr_record_full_sensor *) rec);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
ipmi_sensor_print_compact(intf, (struct sdr_record_compact_sensor *) rec);
break;
}
free(rec);
}
ipmi_sdr_end(intf, itr);
}
const struct valstr threshold_vals[] = {
{ UPPER_NON_RECOV_SPECIFIED, "Upper Non-Recoverable" },
{ UPPER_CRIT_SPECIFIED, "Upper Critical" },
{ UPPER_NON_CRIT_SPECIFIED, "Upper Non-Critical" },
{ LOWER_NON_RECOV_SPECIFIED, "Lower Non-Recoverable" },
{ LOWER_CRIT_SPECIFIED, "Lower Critical" },
{ LOWER_NON_CRIT_SPECIFIED, "Lower Non-Critical" },
{ 0x00, NULL },
};
static void
ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
{
char * id,
* thresh;
unsigned char settingMask;
float setting;
struct sdr_record_list * sdr;
struct ipmi_rs * rsp;
if (argc < 3 || !strncmp(argv[0], "help", 4))
{
printf("sensor thresh <id> <threshold> <setting>\n");
printf(" id : name of the sensor for which threshold is to be set\n");
printf(" threshold : which threshold to set\n");
printf(" unr = upper non-recoverable\n");
printf(" ucr = upper critical\n");
printf(" unc = upper non-critical\n");
printf(" lnc = lower non-critical\n");
printf(" lcr = lower critical\n");
printf(" lnr = lower non-recoverable\n");
printf(" setting : the value to set the threshold to\n");
return;
}
ipmi_intf_session_set_privlvl(intf, IPMI_SESSION_PRIV_ADMIN);
id = argv[0];
thresh = argv[1];
setting = (float)atof(argv[2]);
if (!strcmp(thresh, "unr"))
{
settingMask = UPPER_NON_RECOV_SPECIFIED;
}
else if (!strcmp(thresh, "ucr"))
{
settingMask = UPPER_CRIT_SPECIFIED;
}
else if (!strcmp(thresh, "unc"))
{
settingMask = UPPER_NON_CRIT_SPECIFIED;
}
else if (!strcmp(thresh, "lnc"))
{
settingMask = LOWER_NON_CRIT_SPECIFIED;
}
else if (!strcmp(thresh, "lcr"))
{
settingMask = LOWER_CRIT_SPECIFIED;
}
else if (!strcmp(thresh, "lnr"))
{
settingMask = LOWER_NON_RECOV_SPECIFIED;
}
else
{
printf("Valid threshold not specified!\n");
return;
}
printf("Locating sensor record...\n");
/* lookup by sensor name */
sdr = ipmi_sdr_find_sdr_byid(intf, id);
if (sdr)
{
if (sdr->type != SDR_RECORD_TYPE_FULL_SENSOR)
{
printf("Invalid sensor type %02x\n", sdr->type);
}
else
{
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string, val2str(settingMask, threshold_vals), setting);
rsp = ipmi_sensor_set_sensor_thresholds(intf,
sdr->record.full->keys.sensor_num, settingMask,
sdr_convert_sensor_value_to_raw(sdr->record.full, setting));
if (rsp && rsp->ccode)
printf("Error setting threshold: 0x%x\n", rsp->ccode);
}
}
else
{
printf("Sensor data record not found!\n");
}
ipmi_sdr_list_empty(intf);
}
static void ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv)
{
struct sdr_record_list * sdr;
int i;
if (argc < 1 || !strncmp(argv[0], "help", 4)) {
printf("sensor get <id> ... [id]\n");
printf(" id : name of desired sensor\n");
return;
}
printf("Locating sensor record...\n");
/* lookup by sensor name */
for (i=0; i<argc; i++) {
sdr = ipmi_sdr_find_sdr_byid(intf, argv[i]);
if (sdr) {
verbose = verbose ? : 1;
switch (sdr->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
ipmi_sensor_print_full(intf, sdr->record.full);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
ipmi_sensor_print_compact(intf, sdr->record.compact);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
ipmi_sdr_print_sensor_eventonly(intf, sdr->record.eventonly);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
ipmi_sdr_print_fru_locator(intf, sdr->record.fruloc);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
ipmi_sdr_print_mc_locator(intf, sdr->record.mcloc);
break;
}
} else {
printf("Sensor data record \"%s\" not found!\n", argv[i]);
}
}
ipmi_sdr_list_empty(intf);
}
int
ipmi_sensor_main(struct ipmi_intf * intf, int argc, char ** argv)
{
if (!argc)
ipmi_sensor_list(intf);
else if (!strncmp(argv[0], "help", 4)) {
printf("Sensor Commands: list thresh get\n");
}
else if (!strncmp(argv[0], "list", 4)) {
ipmi_sensor_list(intf);
}
else if (!strncmp(argv[0], "thresh", 5)) {
ipmi_sensor_set_threshold(intf, argc-1, &argv[1]);
}
else if (!strncmp(argv[0], "get", 3)) {
ipmi_sensor_get(intf, argc-1, &argv[1]);
}
else
printf("Invalid sensor command: %s\n", argv[0]);
return 0;
}