mirror of
https://github.com/ipmitool/ipmitool.git
synced 2025-05-10 10:37:22 +00:00
Reworked event type code/sensor type parsing in order to support VITA-specific extensions. Added VITA-specific sensor-specific event types and VITA-specific sensor types.
992 lines
28 KiB
C
992 lines
28 KiB
C
/*
|
|
* Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistribution of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistribution in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of Sun Microsystems, Inc. or the names of
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* This software is provided "AS IS," without a warranty of any kind.
|
|
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
|
|
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
|
|
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
|
|
* SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
|
|
* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
|
|
* OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
|
|
* SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA,
|
|
* OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
|
|
* PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
|
|
* LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,
|
|
* EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include <ipmitool/ipmi.h>
|
|
#include <ipmitool/helper.h>
|
|
#include <ipmitool/log.h>
|
|
#include <ipmitool/ipmi_intf.h>
|
|
#include <ipmitool/ipmi_sdr.h>
|
|
#include <ipmitool/ipmi_sel.h>
|
|
#include <ipmitool/ipmi_sensor.h>
|
|
|
|
extern int verbose;
|
|
void print_sensor_get_usage();
|
|
void print_sensor_thresh_usage();
|
|
|
|
// Macro's for Reading the current sensor Data.
|
|
#define SCANNING_DISABLED 0x40
|
|
#define READING_UNAVAILABLE 0x20
|
|
#define INVALID_THRESHOLD "Invalid Threshold data values. Cannot Set Threshold Data."
|
|
// static
|
|
int
|
|
ipmi_sensor_get_sensor_reading_factors(
|
|
struct ipmi_intf * intf,
|
|
struct sdr_record_full_sensor * sensor,
|
|
uint8_t reading)
|
|
{
|
|
struct ipmi_rq req;
|
|
struct ipmi_rs * rsp;
|
|
uint8_t req_data[2];
|
|
|
|
char id[17];
|
|
|
|
if (intf == NULL || sensor == NULL)
|
|
return -1;
|
|
|
|
memset(id, 0, sizeof(id));
|
|
memcpy(id, sensor->id_string, 16);
|
|
|
|
req_data[0] = sensor->cmn.keys.sensor_num;
|
|
req_data[1] = reading;
|
|
|
|
memset(&req, 0, sizeof(req));
|
|
req.msg.netfn = IPMI_NETFN_SE;
|
|
req.msg.lun = sensor->cmn.keys.lun;
|
|
req.msg.cmd = GET_SENSOR_FACTORS;
|
|
req.msg.data = req_data;
|
|
req.msg.data_len = sizeof(req_data);
|
|
|
|
rsp = intf->sendrecv(intf, &req);
|
|
|
|
if (rsp == NULL) {
|
|
lprintf(LOG_ERR, "Error updating reading factor for sensor %s (#%02x)",
|
|
id, sensor->cmn.keys.sensor_num);
|
|
return -1;
|
|
} else if (rsp->ccode) {
|
|
return -1;
|
|
} else {
|
|
/* Update SDR copy with updated Reading Factors for this reading */
|
|
/* Note:
|
|
* The Format of the returned data is exactly as in the SDR definition (Little Endian Format),
|
|
* therefore we can use raw copy operation here.
|
|
* Note: rsp->data[0] would point to the next valid entry in the sampling table
|
|
*/
|
|
// BUGBUG: uses 'hardcoded' length information from SDR Definition
|
|
memcpy(&sensor->mtol, &rsp->data[1], sizeof(sensor->mtol));
|
|
memcpy(&sensor->bacc, &rsp->data[3], sizeof(sensor->bacc));
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
static
|
|
struct ipmi_rs *
|
|
ipmi_sensor_set_sensor_thresholds(struct ipmi_intf *intf,
|
|
uint8_t sensor,
|
|
uint8_t threshold, uint8_t setting,
|
|
uint8_t target, uint8_t lun, uint8_t channel)
|
|
{
|
|
struct ipmi_rq req;
|
|
static struct sensor_set_thresh_rq set_thresh_rq;
|
|
struct ipmi_rs *rsp;
|
|
uint8_t bridged_request = 0;
|
|
uint32_t save_addr;
|
|
uint32_t save_channel;
|
|
|
|
memset(&set_thresh_rq, 0, sizeof (set_thresh_rq));
|
|
set_thresh_rq.sensor_num = sensor;
|
|
set_thresh_rq.set_mask = threshold;
|
|
if (threshold == UPPER_NON_RECOV_SPECIFIED)
|
|
set_thresh_rq.upper_non_recov = setting;
|
|
else if (threshold == UPPER_CRIT_SPECIFIED)
|
|
set_thresh_rq.upper_crit = setting;
|
|
else if (threshold == UPPER_NON_CRIT_SPECIFIED)
|
|
set_thresh_rq.upper_non_crit = setting;
|
|
else if (threshold == LOWER_NON_CRIT_SPECIFIED)
|
|
set_thresh_rq.lower_non_crit = setting;
|
|
else if (threshold == LOWER_CRIT_SPECIFIED)
|
|
set_thresh_rq.lower_crit = setting;
|
|
else if (threshold == LOWER_NON_RECOV_SPECIFIED)
|
|
set_thresh_rq.lower_non_recov = setting;
|
|
else
|
|
return NULL;
|
|
|
|
if (BRIDGE_TO_SENSOR(intf, target, channel)) {
|
|
bridged_request = 1;
|
|
save_addr = intf->target_addr;
|
|
intf->target_addr = target;
|
|
save_channel = intf->target_channel;
|
|
intf->target_channel = channel;
|
|
}
|
|
memset(&req, 0, sizeof (req));
|
|
req.msg.netfn = IPMI_NETFN_SE;
|
|
req.msg.lun = lun;
|
|
req.msg.cmd = SET_SENSOR_THRESHOLDS;
|
|
req.msg.data = (uint8_t *) & set_thresh_rq;
|
|
req.msg.data_len = sizeof (set_thresh_rq);
|
|
|
|
rsp = intf->sendrecv(intf, &req);
|
|
if (bridged_request) {
|
|
intf->target_addr = save_addr;
|
|
intf->target_channel = save_channel;
|
|
}
|
|
return rsp;
|
|
}
|
|
|
|
static int
|
|
ipmi_sensor_print_fc_discrete(struct ipmi_intf *intf,
|
|
struct sdr_record_common_sensor *sensor,
|
|
uint8_t sdr_record_type)
|
|
{
|
|
struct sensor_reading *sr;
|
|
|
|
sr = ipmi_sdr_read_sensor_value(intf, sensor, sdr_record_type, 3);
|
|
|
|
if (sr == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
if (csv_output) {
|
|
/* NOT IMPLEMENTED */
|
|
} else {
|
|
if (verbose == 0) {
|
|
/* output format
|
|
* id value units status thresholds....
|
|
*/
|
|
printf("%-16s ", sr->s_id);
|
|
if (sr->s_reading_valid) {
|
|
if (sr->s_has_analog_value) {
|
|
/* don't show discrete component */
|
|
printf("| %-10s | %-10s | %-6s",
|
|
sr->s_a_str, sr->s_a_units, "ok");
|
|
} else {
|
|
printf("| 0x%-8x | %-10s | 0x%02x%02x",
|
|
sr->s_reading, "discrete",
|
|
sr->s_data2, sr->s_data3);
|
|
}
|
|
} else {
|
|
printf("| %-10s | %-10s | %-6s",
|
|
"na", "discrete", "na");
|
|
}
|
|
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
|
|
"na", "na", "na", "na", "na", "na");
|
|
|
|
printf("\n");
|
|
} else {
|
|
printf("Sensor ID : %s (0x%x)\n",
|
|
sr->s_id, sensor->keys.sensor_num);
|
|
printf(" Entity ID : %d.%d\n",
|
|
sensor->entity.id, sensor->entity.instance);
|
|
printf(" Sensor Type (Discrete): %s\n",
|
|
ipmi_get_sensor_type(intf, sensor->sensor.
|
|
type));
|
|
if( sr->s_reading_valid )
|
|
{
|
|
if (sr->s_has_analog_value) {
|
|
printf(" Sensor Reading : %s %s\n", sr->s_a_str, sr->s_a_units);
|
|
}
|
|
ipmi_sdr_print_discrete_state(intf, "States Asserted",
|
|
sensor->sensor.type,
|
|
sensor->event_type,
|
|
sr->s_data2,
|
|
sr->s_data3);
|
|
printf("\n");
|
|
} else {
|
|
printf(" Unable to read sensor: Device Not Present\n\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
return (sr->s_reading_valid ? 0 : -1 );
|
|
}
|
|
|
|
static void
|
|
print_thresh_setting(struct sdr_record_full_sensor *full,
|
|
uint8_t thresh_is_avail, uint8_t setting,
|
|
const char *field_sep,
|
|
const char *analog_fmt,
|
|
const char *discrete_fmt,
|
|
const char *na_fmt)
|
|
{
|
|
printf("%s", field_sep);
|
|
if (!thresh_is_avail) {
|
|
printf(na_fmt, "na");
|
|
return;
|
|
}
|
|
if (full && !UNITS_ARE_DISCRETE(&full->cmn)) {
|
|
printf(analog_fmt, sdr_convert_sensor_reading (full, setting));
|
|
} else {
|
|
printf(discrete_fmt, setting);
|
|
}
|
|
}
|
|
|
|
static int
|
|
ipmi_sensor_print_fc_threshold(struct ipmi_intf *intf,
|
|
struct sdr_record_common_sensor *sensor,
|
|
uint8_t sdr_record_type)
|
|
{
|
|
int thresh_available = 1;
|
|
struct ipmi_rs *rsp;
|
|
struct sensor_reading *sr;
|
|
|
|
sr = ipmi_sdr_read_sensor_value(intf, sensor, sdr_record_type, 3);
|
|
|
|
if (sr == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
const char *thresh_status = ipmi_sdr_get_thresh_status(sr, "ns");
|
|
|
|
/*
|
|
* Get sensor thresholds
|
|
*/
|
|
rsp = ipmi_sdr_get_sensor_thresholds(intf,
|
|
sensor->keys.sensor_num, sensor->keys.owner_id,
|
|
sensor->keys.lun, sensor->keys.channel);
|
|
|
|
if ((rsp == NULL) || (rsp->ccode > 0) || (rsp->data_len == 0))
|
|
thresh_available = 0;
|
|
|
|
if (csv_output) {
|
|
/* NOT IMPLEMENTED */
|
|
} else {
|
|
if (verbose == 0) {
|
|
/* output format
|
|
* id value units status thresholds....
|
|
*/
|
|
printf("%-16s ", sr->s_id);
|
|
if (sr->s_reading_valid) {
|
|
if (sr->s_has_analog_value)
|
|
printf("| %-10.3f | %-10s | %-6s",
|
|
sr->s_a_val, sr->s_a_units, thresh_status);
|
|
else
|
|
printf("| 0x%-8x | %-10s | %-6s",
|
|
sr->s_reading, sr->s_a_units, thresh_status);
|
|
} else {
|
|
printf("| %-10s | %-10s | %-6s",
|
|
"na", sr->s_a_units, "na");
|
|
}
|
|
if (thresh_available && sr->full) {
|
|
#define PTS(bit, dataidx) { \
|
|
print_thresh_setting(sr->full, rsp->data[0] & (bit), \
|
|
rsp->data[(dataidx)], "| ", "%-10.3f", "0x-8x", "%-10s"); \
|
|
}
|
|
PTS(LOWER_NON_RECOV_SPECIFIED, 3);
|
|
PTS(LOWER_CRIT_SPECIFIED, 2);
|
|
PTS(LOWER_NON_CRIT_SPECIFIED, 1);
|
|
PTS(UPPER_NON_CRIT_SPECIFIED, 4);
|
|
PTS(UPPER_CRIT_SPECIFIED, 5);
|
|
PTS(UPPER_NON_RECOV_SPECIFIED, 6);
|
|
#undef PTS
|
|
} else {
|
|
printf
|
|
("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
|
|
"na", "na", "na", "na", "na", "na");
|
|
}
|
|
|
|
printf("\n");
|
|
} else {
|
|
printf("Sensor ID : %s (0x%x)\n",
|
|
sr->s_id, sensor->keys.sensor_num);
|
|
|
|
printf(" Entity ID : %d.%d\n",
|
|
sensor->entity.id, sensor->entity.instance);
|
|
|
|
printf(" Sensor Type (Threshold) : %s\n",
|
|
ipmi_get_sensor_type(intf, sensor->sensor.
|
|
type));
|
|
|
|
printf(" Sensor Reading : ");
|
|
if (sr->s_reading_valid) {
|
|
if (sr->full) {
|
|
uint16_t raw_tol = __TO_TOL(sr->full->mtol);
|
|
if (sr->s_has_analog_value) {
|
|
double tol =
|
|
sdr_convert_sensor_tolerance(sr->full,
|
|
raw_tol);
|
|
printf("%.*f (+/- %.*f) %s\n",
|
|
(sr->s_a_val == (int)
|
|
sr->s_a_val) ? 0 : 3,
|
|
sr->s_a_val,
|
|
(tol == (int) tol) ? 0 : 3, tol,
|
|
sr->s_a_units);
|
|
} else {
|
|
printf("0x%x (+/- 0x%x) %s\n",
|
|
sr->s_reading,
|
|
raw_tol,
|
|
sr->s_a_units);
|
|
}
|
|
} else {
|
|
printf("0x%x %s\n", sr->s_reading,
|
|
sr->s_a_units);
|
|
}
|
|
printf(" Status : %s\n", thresh_status);
|
|
|
|
if (thresh_available) {
|
|
if (sr->full) {
|
|
#define PTS(bit, dataidx, str) { \
|
|
print_thresh_setting(sr->full, rsp->data[0] & (bit), \
|
|
rsp->data[(dataidx)], \
|
|
(str), "%.3f\n", "0x%x\n", "%s\n"); \
|
|
}
|
|
|
|
PTS(LOWER_NON_RECOV_SPECIFIED, 3, " Lower Non-Recoverable : ");
|
|
PTS(LOWER_CRIT_SPECIFIED, 2, " Lower Critical : ");
|
|
PTS(LOWER_NON_CRIT_SPECIFIED, 1, " Lower Non-Critical : ");
|
|
PTS(UPPER_NON_CRIT_SPECIFIED, 4, " Upper Non-Critical : ");
|
|
PTS(UPPER_CRIT_SPECIFIED, 5, " Upper Critical : ");
|
|
PTS(UPPER_NON_RECOV_SPECIFIED, 6, " Upper Non-Recoverable : ");
|
|
#undef PTS
|
|
|
|
}
|
|
ipmi_sdr_print_sensor_hysteresis(sensor, sr->full,
|
|
sr->full ? sr->full->threshold.hysteresis.positive :
|
|
sr->compact->threshold.hysteresis.positive,
|
|
"Positive Hysteresis");
|
|
|
|
ipmi_sdr_print_sensor_hysteresis(sensor, sr->full,
|
|
sr->full ? sr->full->threshold.hysteresis.negative :
|
|
sr->compact->threshold.hysteresis.negative,
|
|
"Negative Hysteresis");
|
|
} else {
|
|
printf(" Sensor Threshold Settings not available\n");
|
|
}
|
|
} else {
|
|
printf(" Unable to read sensor: Device Not Present\n\n");
|
|
}
|
|
|
|
ipmi_sdr_print_sensor_event_status(intf,
|
|
sensor->keys.
|
|
sensor_num,
|
|
sensor->sensor.type,
|
|
sensor->event_type,
|
|
ANALOG_SENSOR,
|
|
sensor->keys.owner_id,
|
|
sensor->keys.lun,
|
|
sensor->keys.channel);
|
|
ipmi_sdr_print_sensor_event_enable(intf,
|
|
sensor->keys.
|
|
sensor_num,
|
|
sensor->sensor.type,
|
|
sensor->event_type,
|
|
ANALOG_SENSOR,
|
|
sensor->keys.owner_id,
|
|
sensor->keys.lun,
|
|
sensor->keys.channel);
|
|
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
return (sr->s_reading_valid ? 0 : -1 );
|
|
}
|
|
|
|
int
|
|
ipmi_sensor_print_fc(struct ipmi_intf *intf,
|
|
struct sdr_record_common_sensor *sensor,
|
|
uint8_t sdr_record_type)
|
|
{
|
|
if (IS_THRESHOLD_SENSOR(sensor))
|
|
return ipmi_sensor_print_fc_threshold(intf, sensor, sdr_record_type);
|
|
else
|
|
return ipmi_sensor_print_fc_discrete(intf, sensor, sdr_record_type);
|
|
}
|
|
|
|
static int
|
|
ipmi_sensor_list(struct ipmi_intf *intf)
|
|
{
|
|
struct sdr_get_rs *header;
|
|
struct ipmi_sdr_iterator *itr;
|
|
int rc = 0;
|
|
|
|
lprintf(LOG_DEBUG, "Querying SDR for sensor list");
|
|
|
|
itr = ipmi_sdr_start(intf, 0);
|
|
if (itr == NULL) {
|
|
lprintf(LOG_ERR, "Unable to open SDR for reading");
|
|
return -1;
|
|
}
|
|
|
|
while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL) {
|
|
uint8_t *rec;
|
|
|
|
rec = ipmi_sdr_get_record(intf, header, itr);
|
|
if (rec == NULL) {
|
|
lprintf(LOG_DEBUG, "rec == NULL");
|
|
continue;
|
|
}
|
|
|
|
switch (header->type) {
|
|
case SDR_RECORD_TYPE_FULL_SENSOR:
|
|
case SDR_RECORD_TYPE_COMPACT_SENSOR:
|
|
ipmi_sensor_print_fc(intf,
|
|
(struct
|
|
sdr_record_common_sensor *)
|
|
rec,
|
|
header->type);
|
|
break;
|
|
}
|
|
free(rec);
|
|
rec = NULL;
|
|
|
|
/* fix for CR6604909: */
|
|
/* mask failure of individual reads in sensor list command */
|
|
/* rc = (r == 0) ? rc : r; */
|
|
}
|
|
|
|
ipmi_sdr_end(intf, itr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static const struct valstr threshold_vals[] = {
|
|
{UPPER_NON_RECOV_SPECIFIED, "Upper Non-Recoverable"},
|
|
{UPPER_CRIT_SPECIFIED, "Upper Critical"},
|
|
{UPPER_NON_CRIT_SPECIFIED, "Upper Non-Critical"},
|
|
{LOWER_NON_RECOV_SPECIFIED, "Lower Non-Recoverable"},
|
|
{LOWER_CRIT_SPECIFIED, "Lower Critical"},
|
|
{LOWER_NON_CRIT_SPECIFIED, "Lower Non-Critical"},
|
|
{0x00, NULL},
|
|
};
|
|
|
|
static int
|
|
__ipmi_sensor_set_threshold(struct ipmi_intf *intf,
|
|
uint8_t num, uint8_t mask, uint8_t setting,
|
|
uint8_t target, uint8_t lun, uint8_t channel)
|
|
{
|
|
struct ipmi_rs *rsp;
|
|
|
|
rsp = ipmi_sensor_set_sensor_thresholds(intf, num, mask, setting,
|
|
target, lun, channel);
|
|
|
|
if (rsp == NULL) {
|
|
lprintf(LOG_ERR, "Error setting threshold");
|
|
return -1;
|
|
}
|
|
if (rsp->ccode > 0) {
|
|
lprintf(LOG_ERR, "Error setting threshold: %s",
|
|
val2str(rsp->ccode, completion_code_vals));
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t
|
|
__ipmi_sensor_threshold_value_to_raw(struct sdr_record_full_sensor *full, double value)
|
|
{
|
|
if (!UNITS_ARE_DISCRETE(&full->cmn)) { /* Has an analog reading */
|
|
/* Has an analog reading and supports mx+b */
|
|
return sdr_convert_sensor_value_to_raw(full, value);
|
|
}
|
|
else {
|
|
/* Does not have an analog reading and/or does not support mx+b */
|
|
if (value > 255) {
|
|
return 255;
|
|
}
|
|
else if (value < 0) {
|
|
return 0;
|
|
}
|
|
else {
|
|
return (uint8_t )value;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
ipmi_sensor_set_threshold(struct ipmi_intf *intf, int argc, char **argv)
|
|
{
|
|
char *id, *thresh;
|
|
uint8_t settingMask = 0;
|
|
double setting1 = 0.0, setting2 = 0.0, setting3 = 0.0;
|
|
int allUpper = 0, allLower = 0;
|
|
int ret = 0;
|
|
struct ipmi_rs *rsp;
|
|
int i =0;
|
|
double val[10] = {0};
|
|
|
|
struct sdr_record_list *sdr;
|
|
|
|
if (argc < 3 || strncmp(argv[0], "help", 4) == 0) {
|
|
print_sensor_thresh_usage();
|
|
return 0;
|
|
}
|
|
|
|
id = argv[0];
|
|
thresh = argv[1];
|
|
|
|
if (strncmp(thresh, "upper", 5) == 0) {
|
|
if (argc < 5) {
|
|
lprintf(LOG_ERR,
|
|
"usage: sensor thresh <id> upper <unc> <ucr> <unr>");
|
|
return -1;
|
|
}
|
|
allUpper = 1;
|
|
if (str2double(argv[2], &setting1) != 0) {
|
|
lprintf(LOG_ERR, "Given unc '%s' is invalid.",
|
|
argv[2]);
|
|
return (-1);
|
|
}
|
|
if (str2double(argv[3], &setting2) != 0) {
|
|
lprintf(LOG_ERR, "Given ucr '%s' is invalid.",
|
|
argv[3]);
|
|
return (-1);
|
|
}
|
|
if (str2double(argv[4], &setting3) != 0) {
|
|
lprintf(LOG_ERR, "Given unr '%s' is invalid.",
|
|
argv[4]);
|
|
return (-1);
|
|
}
|
|
} else if (strncmp(thresh, "lower", 5) == 0) {
|
|
if (argc < 5) {
|
|
lprintf(LOG_ERR,
|
|
"usage: sensor thresh <id> lower <lnr> <lcr> <lnc>");
|
|
return -1;
|
|
}
|
|
allLower = 1;
|
|
if (str2double(argv[2], &setting1) != 0) {
|
|
lprintf(LOG_ERR, "Given lnc '%s' is invalid.",
|
|
argv[2]);
|
|
return (-1);
|
|
}
|
|
if (str2double(argv[3], &setting2) != 0) {
|
|
lprintf(LOG_ERR, "Given lcr '%s' is invalid.",
|
|
argv[3]);
|
|
return (-1);
|
|
}
|
|
if (str2double(argv[4], &setting3) != 0) {
|
|
lprintf(LOG_ERR, "Given lnr '%s' is invalid.",
|
|
argv[4]);
|
|
return (-1);
|
|
}
|
|
} else {
|
|
if (strncmp(thresh, "unr", 3) == 0)
|
|
settingMask = UPPER_NON_RECOV_SPECIFIED;
|
|
else if (strncmp(thresh, "ucr", 3) == 0)
|
|
settingMask = UPPER_CRIT_SPECIFIED;
|
|
else if (strncmp(thresh, "unc", 3) == 0)
|
|
settingMask = UPPER_NON_CRIT_SPECIFIED;
|
|
else if (strncmp(thresh, "lnc", 3) == 0)
|
|
settingMask = LOWER_NON_CRIT_SPECIFIED;
|
|
else if (strncmp(thresh, "lcr", 3) == 0)
|
|
settingMask = LOWER_CRIT_SPECIFIED;
|
|
else if (strncmp(thresh, "lnr", 3) == 0)
|
|
settingMask = LOWER_NON_RECOV_SPECIFIED;
|
|
else {
|
|
lprintf(LOG_ERR,
|
|
"Valid threshold '%s' for sensor '%s' not specified!",
|
|
thresh, id);
|
|
return -1;
|
|
}
|
|
if (str2double(argv[2], &setting1) != 0) {
|
|
lprintf(LOG_ERR,
|
|
"Given %s threshold value '%s' is invalid.",
|
|
thresh, argv[2]);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
printf("Locating sensor record '%s'...\n", id);
|
|
|
|
/* lookup by sensor name */
|
|
sdr = ipmi_sdr_find_sdr_byid(intf, id);
|
|
if (sdr == NULL) {
|
|
lprintf(LOG_ERR, "Sensor data record not found!");
|
|
return -1;
|
|
}
|
|
|
|
if (sdr->type != SDR_RECORD_TYPE_FULL_SENSOR) {
|
|
lprintf(LOG_ERR, "Invalid sensor type %02x", sdr->type);
|
|
return -1;
|
|
}
|
|
|
|
if (!IS_THRESHOLD_SENSOR(sdr->record.common)) {
|
|
lprintf(LOG_ERR, "Invalid sensor event type %02x", sdr->record.common->event_type);
|
|
return -1;
|
|
}
|
|
|
|
|
|
if (allUpper) {
|
|
settingMask = UPPER_NON_CRIT_SPECIFIED;
|
|
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
|
|
sdr->record.full->id_string,
|
|
val2str(settingMask, threshold_vals), setting1);
|
|
ret = __ipmi_sensor_set_threshold(intf,
|
|
sdr->record.common->keys.
|
|
sensor_num, settingMask,
|
|
__ipmi_sensor_threshold_value_to_raw(sdr->record.full, setting1),
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,
|
|
sdr->record.common->keys.channel);
|
|
|
|
settingMask = UPPER_CRIT_SPECIFIED;
|
|
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
|
|
sdr->record.full->id_string,
|
|
val2str(settingMask, threshold_vals), setting2);
|
|
ret = __ipmi_sensor_set_threshold(intf,
|
|
sdr->record.common->keys.
|
|
sensor_num, settingMask,
|
|
__ipmi_sensor_threshold_value_to_raw(sdr->record.full, setting2),
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,
|
|
sdr->record.common->keys.channel);
|
|
|
|
settingMask = UPPER_NON_RECOV_SPECIFIED;
|
|
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
|
|
sdr->record.full->id_string,
|
|
val2str(settingMask, threshold_vals), setting3);
|
|
ret = __ipmi_sensor_set_threshold(intf,
|
|
sdr->record.common->keys.
|
|
sensor_num, settingMask,
|
|
__ipmi_sensor_threshold_value_to_raw(sdr->record.full, setting3),
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,
|
|
sdr->record.common->keys.channel);
|
|
} else if (allLower) {
|
|
settingMask = LOWER_NON_RECOV_SPECIFIED;
|
|
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
|
|
sdr->record.full->id_string,
|
|
val2str(settingMask, threshold_vals), setting1);
|
|
ret = __ipmi_sensor_set_threshold(intf,
|
|
sdr->record.common->keys.
|
|
sensor_num, settingMask,
|
|
__ipmi_sensor_threshold_value_to_raw(sdr->record.full, setting1),
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,
|
|
sdr->record.common->keys.channel);
|
|
|
|
settingMask = LOWER_CRIT_SPECIFIED;
|
|
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
|
|
sdr->record.full->id_string,
|
|
val2str(settingMask, threshold_vals), setting2);
|
|
ret = __ipmi_sensor_set_threshold(intf,
|
|
sdr->record.common->keys.
|
|
sensor_num, settingMask,
|
|
__ipmi_sensor_threshold_value_to_raw(sdr->record.full, setting2),
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,
|
|
sdr->record.common->keys.channel);
|
|
|
|
settingMask = LOWER_NON_CRIT_SPECIFIED;
|
|
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
|
|
sdr->record.full->id_string,
|
|
val2str(settingMask, threshold_vals), setting3);
|
|
ret = __ipmi_sensor_set_threshold(intf,
|
|
sdr->record.common->keys.
|
|
sensor_num, settingMask,
|
|
__ipmi_sensor_threshold_value_to_raw(sdr->record.full, setting3),
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,
|
|
sdr->record.common->keys.channel);
|
|
} else {
|
|
|
|
/*
|
|
* Current implementation doesn't check for the valid setting of upper non critical and other thresholds.
|
|
* In the below logic:
|
|
* Get all the current reading of the sensor i.e. unc, uc, lc,lnc.
|
|
* Validate the values given by the user.
|
|
* If the values are not correct, then popup with the Error message and return.
|
|
*/
|
|
/*
|
|
* Get current reading
|
|
*/
|
|
rsp = ipmi_sdr_get_sensor_reading_ipmb(intf,
|
|
sdr->record.common->keys.sensor_num,
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,sdr->record.common->keys.channel);
|
|
rsp = ipmi_sdr_get_sensor_thresholds(intf,
|
|
sdr->record.common->keys.sensor_num,
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,
|
|
sdr->record.common->keys.channel);
|
|
if ((rsp == NULL) || (rsp->ccode > 0)) {
|
|
lprintf(LOG_ERR, "Sensor data record not found!");
|
|
return -1;
|
|
}
|
|
for(i=1;i<=6;i++) {
|
|
val[i] = sdr_convert_sensor_reading(sdr->record.full, rsp->data[i]);
|
|
if(val[i] < 0)
|
|
val[i] = 0;
|
|
}
|
|
/* Check for the valid Upper non recovarable Value.*/
|
|
if( (settingMask & UPPER_NON_RECOV_SPECIFIED) ) {
|
|
|
|
if( (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED) &&
|
|
(( (rsp->data[0] & UPPER_CRIT_SPECIFIED) && ( setting1 <= val[5])) ||
|
|
( (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED) && ( setting1 <= val[4]))) )
|
|
{
|
|
lprintf(LOG_ERR, INVALID_THRESHOLD);
|
|
return -1;
|
|
}
|
|
} else if( (settingMask & UPPER_CRIT_SPECIFIED) ) { /* Check for the valid Upper critical Value.*/
|
|
if( (rsp->data[0] & UPPER_CRIT_SPECIFIED) &&
|
|
(((rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)&& ( setting1 >= val[6])) ||
|
|
((rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)&&( setting1 <= val[4]))) )
|
|
{
|
|
lprintf(LOG_ERR, INVALID_THRESHOLD);
|
|
return -1;
|
|
}
|
|
} else if( (settingMask & UPPER_NON_CRIT_SPECIFIED) ) { /* Check for the valid Upper non critical Value.*/
|
|
if( (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED) &&
|
|
(((rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)&&( setting1 >= val[6])) ||
|
|
((rsp->data[0] & UPPER_CRIT_SPECIFIED)&&( setting1 >= val[5])) ||
|
|
((rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)&&( setting1 <= val[1]))) )
|
|
{
|
|
lprintf(LOG_ERR, INVALID_THRESHOLD);
|
|
return -1;
|
|
}
|
|
} else if( (settingMask & LOWER_NON_CRIT_SPECIFIED) ) { /* Check for the valid lower non critical Value.*/
|
|
if( (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED) &&
|
|
(((rsp->data[0] & LOWER_CRIT_SPECIFIED)&&( setting1 <= val[2])) ||
|
|
((rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)&&( setting1 <= val[3]))||
|
|
((rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)&&( setting1 >= val[4]))) )
|
|
{
|
|
lprintf(LOG_ERR, INVALID_THRESHOLD);
|
|
return -1;
|
|
}
|
|
} else if( (settingMask & LOWER_CRIT_SPECIFIED) ) { /* Check for the valid lower critical Value.*/
|
|
if( (rsp->data[0] & LOWER_CRIT_SPECIFIED) &&
|
|
(((rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)&&( setting1 >= val[1])) ||
|
|
((rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)&&( setting1 <= val[3]))) )
|
|
{
|
|
lprintf(LOG_ERR, INVALID_THRESHOLD);
|
|
return -1;
|
|
}
|
|
} else if( (settingMask & LOWER_NON_RECOV_SPECIFIED) ) { /* Check for the valid lower non recovarable Value.*/
|
|
if( (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED) &&
|
|
(((rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)&&( setting1 >= val[1])) ||
|
|
((rsp->data[0] & LOWER_CRIT_SPECIFIED)&&( setting1 >= val[2]))) )
|
|
{
|
|
lprintf(LOG_ERR, INVALID_THRESHOLD);
|
|
return -1;
|
|
}
|
|
} else { /* None of this Then Return with error messages.*/
|
|
lprintf(LOG_ERR, INVALID_THRESHOLD);
|
|
return -1;
|
|
}
|
|
|
|
|
|
printf("Setting sensor \"%s\" %s threshold to %.3f\n",
|
|
sdr->record.full->id_string,
|
|
val2str(settingMask, threshold_vals), setting1);
|
|
|
|
ret = __ipmi_sensor_set_threshold(intf,
|
|
sdr->record.common->keys.
|
|
sensor_num, settingMask,
|
|
__ipmi_sensor_threshold_value_to_raw(sdr->record.full, setting1),
|
|
sdr->record.common->keys.owner_id,
|
|
sdr->record.common->keys.lun,
|
|
sdr->record.common->keys.channel);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
ipmi_sensor_get_reading(struct ipmi_intf *intf, int argc, char **argv)
|
|
{
|
|
struct sdr_record_list *sdr;
|
|
int i, rc=0;
|
|
|
|
if (argc < 1 || strncmp(argv[0], "help", 4) == 0) {
|
|
lprintf(LOG_NOTICE, "sensor reading <id> ... [id]");
|
|
lprintf(LOG_NOTICE, " id : name of desired sensor");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < argc; i++) {
|
|
sdr = ipmi_sdr_find_sdr_byid(intf, argv[i]);
|
|
if (sdr == NULL) {
|
|
lprintf(LOG_ERR, "Sensor \"%s\" not found!",
|
|
argv[i]);
|
|
rc = -1;
|
|
continue;
|
|
}
|
|
|
|
switch (sdr->type) {
|
|
case SDR_RECORD_TYPE_FULL_SENSOR:
|
|
case SDR_RECORD_TYPE_COMPACT_SENSOR:
|
|
{
|
|
struct sensor_reading *sr;
|
|
struct sdr_record_common_sensor *sensor = sdr->record.common;
|
|
sr = ipmi_sdr_read_sensor_value(intf, sensor, sdr->type, 3);
|
|
|
|
if (sr == NULL) {
|
|
rc = -1;
|
|
continue;
|
|
}
|
|
|
|
if (!sr->full)
|
|
continue;
|
|
|
|
if (!sr->s_reading_valid)
|
|
continue;
|
|
|
|
if (!sr->s_has_analog_value) {
|
|
lprintf(LOG_ERR, "Sensor \"%s\" is a discrete sensor!", argv[i]);
|
|
continue;
|
|
}
|
|
if (csv_output)
|
|
printf("%s,%s\n", argv[i], sr->s_a_str);
|
|
else
|
|
printf("%-16s | %s\n", argv[i], sr->s_a_str);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
ipmi_sensor_get(struct ipmi_intf *intf, int argc, char **argv)
|
|
{
|
|
int i, v;
|
|
int rc = 0;
|
|
struct sdr_record_list *sdr;
|
|
|
|
if (argc < 1) {
|
|
lprintf(LOG_ERR, "Not enough parameters given.");
|
|
print_sensor_get_usage();
|
|
return (-1);
|
|
} else if (strcmp(argv[0], "help") == 0) {
|
|
print_sensor_get_usage();
|
|
return 0;
|
|
}
|
|
printf("Locating sensor record...\n");
|
|
/* lookup by sensor name */
|
|
for (i = 0; i < argc; i++) {
|
|
sdr = ipmi_sdr_find_sdr_byid(intf, argv[i]);
|
|
if (sdr == NULL) {
|
|
lprintf(LOG_ERR, "Sensor data record \"%s\" not found!",
|
|
argv[i]);
|
|
rc = -1;
|
|
continue;
|
|
}
|
|
/* need to set verbose level to 1 */
|
|
v = verbose;
|
|
verbose = 1;
|
|
switch (sdr->type) {
|
|
case SDR_RECORD_TYPE_FULL_SENSOR:
|
|
case SDR_RECORD_TYPE_COMPACT_SENSOR:
|
|
if (ipmi_sensor_print_fc(intf,
|
|
(struct sdr_record_common_sensor *) sdr->record.common,
|
|
sdr->type)) {
|
|
rc = -1;
|
|
}
|
|
break;
|
|
default:
|
|
if (ipmi_sdr_print_listentry(intf, sdr) < 0) {
|
|
rc = (-1);
|
|
}
|
|
break;
|
|
}
|
|
verbose = v;
|
|
sdr = NULL;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
ipmi_sensor_main(struct ipmi_intf *intf, int argc, char **argv)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (argc == 0) {
|
|
rc = ipmi_sensor_list(intf);
|
|
} else if (strncmp(argv[0], "help", 4) == 0) {
|
|
lprintf(LOG_NOTICE, "Sensor Commands: list thresh get reading");
|
|
} else if (strncmp(argv[0], "list", 4) == 0) {
|
|
rc = ipmi_sensor_list(intf);
|
|
} else if (strncmp(argv[0], "thresh", 5) == 0) {
|
|
rc = ipmi_sensor_set_threshold(intf, argc - 1, &argv[1]);
|
|
} else if (strncmp(argv[0], "get", 3) == 0) {
|
|
rc = ipmi_sensor_get(intf, argc - 1, &argv[1]);
|
|
} else if (strncmp(argv[0], "reading", 7) == 0) {
|
|
rc = ipmi_sensor_get_reading(intf, argc - 1, &argv[1]);
|
|
} else {
|
|
lprintf(LOG_ERR, "Invalid sensor command: %s", argv[0]);
|
|
rc = -1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* print_sensor_get_usage - print usage for # ipmitool sensor get NAC;
|
|
*
|
|
* @returns: void
|
|
*/
|
|
void
|
|
print_sensor_get_usage()
|
|
{
|
|
lprintf(LOG_NOTICE, "sensor get <id> ... [id]");
|
|
lprintf(LOG_NOTICE, " id : name of desired sensor");
|
|
}
|
|
|
|
/* print_sensor_thresh_set_usage - print usage for # ipmitool sensor thresh;
|
|
*
|
|
* @returns: void
|
|
*/
|
|
void
|
|
print_sensor_thresh_usage()
|
|
{
|
|
lprintf(LOG_NOTICE,
|
|
"sensor thresh <id> <threshold> <setting>");
|
|
lprintf(LOG_NOTICE,
|
|
" id : name of the sensor for which threshold is to be set");
|
|
lprintf(LOG_NOTICE,
|
|
" threshold : which threshold to set");
|
|
lprintf(LOG_NOTICE,
|
|
" unr = upper non-recoverable");
|
|
lprintf(LOG_NOTICE,
|
|
" ucr = upper critical");
|
|
lprintf(LOG_NOTICE,
|
|
" unc = upper non-critical");
|
|
lprintf(LOG_NOTICE,
|
|
" lnc = lower non-critical");
|
|
lprintf(LOG_NOTICE,
|
|
" lcr = lower critical");
|
|
lprintf(LOG_NOTICE,
|
|
" lnr = lower non-recoverable");
|
|
lprintf(LOG_NOTICE,
|
|
" setting : the value to set the threshold to");
|
|
lprintf(LOG_NOTICE,
|
|
"");
|
|
lprintf(LOG_NOTICE,
|
|
"sensor thresh <id> lower <lnr> <lcr> <lnc>");
|
|
lprintf(LOG_NOTICE,
|
|
" Set all lower thresholds at the same time");
|
|
lprintf(LOG_NOTICE,
|
|
"");
|
|
lprintf(LOG_NOTICE,
|
|
"sensor thresh <id> upper <unc> <ucr> <unr>");
|
|
lprintf(LOG_NOTICE,
|
|
" Set all upper thresholds at the same time");
|
|
lprintf(LOG_NOTICE, "");
|
|
}
|