ipmitool/lib/ipmi_sel.c
Dmitry Bazhenov b44366e92d ID:400 - Add support for VITA-specific sensor types and events.
Reworked event type code/sensor type parsing in order to support
VITA-specific extensions. Added VITA-specific sensor-specific event
types and VITA-specific sensor types.
2016-05-17 20:49:06 +02:00

3126 lines
84 KiB
C

/* -*-mode: C; indent-tabs-mode: t; -*-
* Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind.
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
* SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
* SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA,
* OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
* PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
* LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,
* EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*/
#define _BSD_SOURCE
#include <string.h>
#include <strings.h>
#include <math.h>
#define __USE_XOPEN /* glibc2 needs this for strptime */
#include <time.h>
#include <ctype.h>
#include <errno.h>
#include <ipmitool/helper.h>
#include <ipmitool/log.h>
#include <ipmitool/ipmi.h>
#include <ipmitool/ipmi_mc.h>
#include <ipmitool/ipmi_intf.h>
#include <ipmitool/ipmi_sel.h>
#include <ipmitool/ipmi_sel_supermicro.h>
#include <ipmitool/ipmi_sdr.h>
#include <ipmitool/ipmi_fru.h>
#include <ipmitool/ipmi_sensor.h>
#include <ipmitool/ipmi_strings.h>
extern int verbose;
static int sel_extended = 0;
static int sel_oem_nrecs = 0;
static IPMI_OEM sel_iana = IPMI_OEM_UNKNOWN;
struct ipmi_sel_oem_msg_rec {
int value[14];
char *string[14];
char *text;
} *sel_oem_msg;
#define SEL_BYTE(n) (n-3) /* So we can refer to byte positions in log entries (byte 3 is at index 0, etc) */
// Definiation for the Decoding the SEL OEM Bytes for DELL Platfoms
#define BIT(x) (1 << x) /* Select the Bit */
#define SIZE_OF_DESC 128 /* Max Size of the description String to be displyed for the Each sel entry */
#define MAX_CARDNO_STR 32 /* Max Size of Card number string */
#define MAX_DIMM_STR 32 /* Max Size of DIMM string */
#define MAX_CARD_STR 32 /* Max Size of Card string */
/*
* Reads values found in message translation file. XX is a wildcard, R means reserved.
* Returns -1 for XX, -2 for R, -3 for non-hex (string), or positive integer from a hex value.
*/
static int ipmi_sel_oem_readval(char *str)
{
int ret;
if (!strcmp(str, "XX")) {
return -1;
}
if (!strcmp(str, "R")) {
return -2;
}
if (sscanf(str, "0x%x", &ret) != 1) {
return -3;
}
return ret;
}
/*
* This is where the magic happens. SEL_BYTE is a bit ugly, but it allows
* reference to byte positions instead of array indexes which (hopefully)
* helps make the code easier to read.
*/
static int
ipmi_sel_oem_match(uint8_t *evt, const struct ipmi_sel_oem_msg_rec *rec)
{
if (evt[2] == rec->value[SEL_BYTE(3)]
&& ((rec->value[SEL_BYTE(4)] < 0)
|| (evt[3] == rec->value[SEL_BYTE(4)]))
&& ((rec->value[SEL_BYTE(5)] < 0)
|| (evt[4] == rec->value[SEL_BYTE(5)]))
&& ((rec->value[SEL_BYTE(6)] < 0)
|| (evt[5] == rec->value[SEL_BYTE(6)]))
&& ((rec->value[SEL_BYTE(7)] < 0)
|| (evt[6] == rec->value[SEL_BYTE(7)]))
&& ((rec->value[SEL_BYTE(11)] < 0)
|| (evt[10] == rec->value[SEL_BYTE(11)]))
&& ((rec->value[SEL_BYTE(12)] < 0)
|| (evt[11] == rec->value[SEL_BYTE(12)]))) {
return 1;
} else {
return 0;
}
}
int ipmi_sel_oem_init(const char * filename)
{
FILE * fp;
int i, j, k, n, byte;
char buf[15][150];
if (filename == NULL) {
lprintf(LOG_ERR, "No SEL OEM filename provided");
return -1;
}
fp = ipmi_open_file_read(filename);
if (fp == NULL) {
lprintf(LOG_ERR, "Could not open %s file", filename);
return -1;
}
/* count number of records (lines) in input file */
sel_oem_nrecs = 0;
while (fscanf(fp, "%*[^\n]\n") == 0) {
sel_oem_nrecs++;
}
printf("nrecs=%d\n", sel_oem_nrecs);
rewind(fp);
sel_oem_msg = (struct ipmi_sel_oem_msg_rec *)calloc(sel_oem_nrecs,
sizeof(struct ipmi_sel_oem_msg_rec));
for (i=0; i < sel_oem_nrecs; i++) {
n=fscanf(fp, "\"%[^\"]\",\"%[^\"]\",\"%[^\"]\",\"%[^\"]\",\""
"%[^\"]\",\"%[^\"]\",\"%[^\"]\",\"%[^\"]\",\""
"%[^\"]\",\"%[^\"]\",\"%[^\"]\",\"%[^\"]\",\""
"%[^\"]\",\"%[^\"]\",\"%[^\"]\"\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
buf[6], buf[7], buf[8], buf[9], buf[10], buf[11],
buf[12], buf[13], buf[14]);
if (n != 15) {
lprintf (LOG_ERR, "Encountered problems reading line %d of %s",
i+1, filename);
fclose(fp);
fp = NULL;
sel_oem_nrecs = 0;
/* free all the memory allocated so far */
for (j=0; j<i ; j++) {
for (k=3; k<17; k++) {
if (sel_oem_msg[j].value[SEL_BYTE(k)] == -3) {
free(sel_oem_msg[j].string[SEL_BYTE(k)]);
sel_oem_msg[j].string[SEL_BYTE(k)] = NULL;
}
}
}
free(sel_oem_msg);
sel_oem_msg = NULL;
return -1;
}
for (byte = 3; byte < 17; byte++) {
if ((sel_oem_msg[i].value[SEL_BYTE(byte)] =
ipmi_sel_oem_readval(buf[SEL_BYTE(byte)])) == -3) {
sel_oem_msg[i].string[SEL_BYTE(byte)] =
(char *)malloc(strlen(buf[SEL_BYTE(byte)]) + 1);
strcpy(sel_oem_msg[i].string[SEL_BYTE(byte)],
buf[SEL_BYTE(byte)]);
}
}
sel_oem_msg[i].text = (char *)malloc(strlen(buf[SEL_BYTE(17)]) + 1);
strcpy(sel_oem_msg[i].text, buf[SEL_BYTE(17)]);
}
fclose(fp);
fp = NULL;
return 0;
}
static void ipmi_sel_oem_message(struct sel_event_record * evt, int verbose)
{
/*
* Note: although we have a verbose argument, currently the output
* isn't affected by it.
*/
int i, j;
for (i=0; i < sel_oem_nrecs; i++) {
if (ipmi_sel_oem_match((uint8_t *)evt, &sel_oem_msg[i])) {
printf (csv_output ? ",\"%s\"" : " | %s", sel_oem_msg[i].text);
for (j=4; j<17; j++) {
if (sel_oem_msg[i].value[SEL_BYTE(j)] == -3) {
printf (csv_output ? ",%s=0x%x" : " %s = 0x%x",
sel_oem_msg[i].string[SEL_BYTE(j)],
((uint8_t *)evt)[SEL_BYTE(j)]);
}
}
}
}
}
static const struct valstr event_dir_vals[] = {
{ 0, "Assertion Event" },
{ 1, "Deassertion Event" },
{ 0, NULL },
};
static const char *
ipmi_get_event_type(uint8_t code)
{
if (code == 0)
return "Unspecified";
if (code == 1)
return "Threshold";
if (code >= 0x02 && code <= 0x0b)
return "Generic Discrete";
if (code == 0x6f)
return "Sensor-specific Discrete";
if (code >= 0x70 && code <= 0x7f)
return "OEM";
return "Reserved";
}
static char *
ipmi_sel_timestamp(uint32_t stamp)
{
static char tbuf[40];
time_t s = (time_t)stamp;
memset(tbuf, 0, 40);
strftime(tbuf, sizeof(tbuf), "%m/%d/%Y %H:%M:%S", gmtime(&s));
return tbuf;
}
static char *
ipmi_sel_timestamp_date(uint32_t stamp)
{
static char tbuf[11];
time_t s = (time_t)stamp;
strftime(tbuf, sizeof(tbuf), "%m/%d/%Y", gmtime(&s));
return tbuf;
}
static char *
ipmi_sel_timestamp_time(uint32_t stamp)
{
static char tbuf[9];
time_t s = (time_t)stamp;
strftime(tbuf, sizeof(tbuf), "%H:%M:%S", gmtime(&s));
return tbuf;
}
static char *
hex2ascii (uint8_t * hexChars, uint8_t numBytes)
{
int count;
static char hexString[SEL_OEM_NOTS_DATA_LEN+1]; /*Max Size*/
if(numBytes > SEL_OEM_NOTS_DATA_LEN)
numBytes = SEL_OEM_NOTS_DATA_LEN;
for(count=0;count < numBytes;count++)
{
if((hexChars[count]<0x40)||(hexChars[count]>0x7e))
hexString[count]='.';
else
hexString[count]=hexChars[count];
}
hexString[numBytes]='\0';
return hexString;
}
IPMI_OEM
ipmi_get_oem(struct ipmi_intf * intf)
{
/* Execute a Get Device ID command to determine the OEM */
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct ipm_devid_rsp *devid;
if (intf->fd == 0) {
if( sel_iana != IPMI_OEM_UNKNOWN ){
return sel_iana;
}
return IPMI_OEM_UNKNOWN;
}
/*
* Return the cached manufacturer id if the device is open and
* we got an identified OEM owner. Otherwise just attempt to read
* it.
*/
if (intf->opened && intf->manufacturer_id != IPMI_OEM_UNKNOWN) {
return intf->manufacturer_id;
}
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_GET_DEVICE_ID;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get Device ID command failed");
return IPMI_OEM_UNKNOWN;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get Device ID command failed: %#x %s",
rsp->ccode, val2str(rsp->ccode, completion_code_vals));
return IPMI_OEM_UNKNOWN;
}
devid = (struct ipm_devid_rsp *) rsp->data;
lprintf(LOG_DEBUG,"Iana: %u",
IPM_DEV_MANUFACTURER_ID(devid->manufacturer_id));
return IPM_DEV_MANUFACTURER_ID(devid->manufacturer_id);
}
static int
ipmi_sel_add_entry(struct ipmi_intf * intf, struct sel_event_record * rec)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_ADD_SEL_ENTRY;
req.msg.data = (unsigned char *)rec;
req.msg.data_len = 16;
ipmi_sel_print_std_entry(intf, rec);
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Add SEL Entry failed");
return -1;
}
else if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Add SEL Entry failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
return 0;
}
static int
ipmi_sel_add_entries_fromfile(struct ipmi_intf * intf, const char * filename)
{
FILE * fp;
char buf[1024];
char * ptr, * tok;
int i, j;
int rc = 0;
uint8_t rqdata[8];
struct sel_event_record sel_event;
if (filename == NULL)
return -1;
fp = ipmi_open_file_read(filename);
if (fp == NULL)
return -1;
while (feof(fp) == 0) {
if (fgets(buf, 1024, fp) == NULL)
continue;
/* clip off optional comment tail indicated by # */
ptr = strchr(buf, '#');
if (ptr)
*ptr = '\0';
else
ptr = buf + strlen(buf);
/* clip off trailing and leading whitespace */
ptr--;
while (isspace((int)*ptr) && ptr >= buf)
*ptr-- = '\0';
ptr = buf;
while (isspace((int)*ptr))
ptr++;
if (strlen(ptr) == 0)
continue;
/* parse the event, 7 bytes with optional comment */
/* 0x00 0x00 0x00 0x00 0x00 0x00 0x00 # event */
i = 0;
tok = strtok(ptr, " ");
while (tok) {
if (i == 7)
break;
j = i++;
if (str2uchar(tok, &rqdata[j]) != 0) {
break;
}
tok = strtok(NULL, " ");
}
if (i < 7) {
lprintf(LOG_ERR, "Invalid Event: %s",
buf2str(rqdata, sizeof(rqdata)));
continue;
}
memset(&sel_event, 0, sizeof(struct sel_event_record));
sel_event.record_id = 0x0000;
sel_event.record_type = 0x02;
/*
* IPMI spec §32.1 generator ID
* Bit 0 = 1 "Software defined"
* Bit 1-7: SWID (IPMI spec §5.5), using 2 = "System management software"
*/
sel_event.sel_type.standard_type.gen_id = 0x41;
sel_event.sel_type.standard_type.evm_rev = rqdata[0];
sel_event.sel_type.standard_type.sensor_type = rqdata[1];
sel_event.sel_type.standard_type.sensor_num = rqdata[2];
sel_event.sel_type.standard_type.event_type = rqdata[3] & 0x7f;
sel_event.sel_type.standard_type.event_dir = (rqdata[3] & 0x80) >> 7;
sel_event.sel_type.standard_type.event_data[0] = rqdata[4];
sel_event.sel_type.standard_type.event_data[1] = rqdata[5];
sel_event.sel_type.standard_type.event_data[2] = rqdata[6];
rc = ipmi_sel_add_entry(intf, &sel_event);
if (rc < 0)
break;
}
fclose(fp);
return rc;
}
static struct ipmi_event_sensor_types oem_kontron_event_reading_types[] __attribute__((unused)) = {
{ 0x70 , 0x00 , 0xff, "Code Assert" },
{ 0x71 , 0x00 , 0xff, "Code Assert" },
{ 0, 0, 0xFF, NULL }
};
char *
get_kontron_evt_desc(struct ipmi_intf *intf, struct sel_event_record * rec)
{
char * description = NULL;
/*
* Kontron OEM events are described in the product's user manual, but are limited in favor of
* sensor specific
*/
/* Only standard records are defined so far */
if( rec->record_type < 0xC0 ){
const struct ipmi_event_sensor_types *st=NULL;
for ( st=oem_kontron_event_types ; st->desc != NULL; st++){
if (st->code == rec->sel_type.standard_type.event_type ){
size_t len =strlen(st->desc);
description = (char*)malloc( len + 1 );
memcpy(description, st->desc , len);
description[len] = 0;;
return description;
}
}
}
return NULL;
}
char *
get_newisys_evt_desc(struct ipmi_intf * intf, struct sel_event_record * rec)
{
/*
* Newisys OEM event descriptions can be retrieved through an
* OEM IPMI command.
*/
struct ipmi_rs * rsp;
struct ipmi_rq req;
uint8_t msg_data[6];
char * description = NULL;
memset(&req, 0, sizeof(req));
req.msg.netfn = 0x2E;
req.msg.cmd = 0x01;
req.msg.data_len = sizeof(msg_data);
msg_data[0] = 0x15; /* IANA LSB */
msg_data[1] = 0x24; /* IANA */
msg_data[2] = 0x00; /* IANA MSB */
msg_data[3] = 0x01; /* Subcommand */
msg_data[4] = rec->record_id & 0x00FF; /* SEL Record ID LSB */
msg_data[5] = (rec->record_id & 0xFF00) >> 8; /* SEL Record ID MSB */
req.msg.data = msg_data;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
if (verbose)
lprintf(LOG_ERR, "Error issuing OEM command");
return NULL;
}
if (rsp->ccode > 0) {
if (verbose)
lprintf(LOG_ERR, "OEM command returned error code: %s",
val2str(rsp->ccode, completion_code_vals));
return NULL;
}
/* Verify our response before we use it */
if (rsp->data_len < 5)
{
lprintf(LOG_ERR, "Newisys OEM response too short");
return NULL;
}
else if (rsp->data_len != (4 + rsp->data[3]))
{
lprintf(LOG_ERR, "Newisys OEM response has unexpected length");
return NULL;
}
else if (IPM_DEV_MANUFACTURER_ID(rsp->data) != IPMI_OEM_NEWISYS)
{
lprintf(LOG_ERR, "Newisys OEM response has unexpected length");
return NULL;
}
description = (char*)malloc(rsp->data[3] + 1);
memcpy(description, rsp->data + 4, rsp->data[3]);
description[rsp->data[3]] = 0;;
return description;
}
char *
get_supermicro_evt_desc(struct ipmi_intf *intf, struct sel_event_record *rec)
{
struct ipmi_rs *rsp;
struct ipmi_rq req;
char *desc = NULL;
int chipset_type = 1;
int data1;
int data2;
int data3;
int sensor_type;
uint8_t i = 0;
uint16_t oem_id = 0;
/* Get the OEM event Bytes of the SEL Records byte 13, 14, 15 to
* data1,data2,data3
*/
data1 = rec->sel_type.standard_type.event_data[0];
data2 = rec->sel_type.standard_type.event_data[1];
data3 = rec->sel_type.standard_type.event_data[2];
/* Check for the Standard Event type == 0x6F */
if (rec->sel_type.standard_type.event_type != 0x6F) {
return NULL;
}
/* Allocate mem for te Description string */
desc = malloc(sizeof(char) * SIZE_OF_DESC);
if (desc == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return NULL;
}
memset(desc, '\0', SIZE_OF_DESC);
sensor_type = rec->sel_type.standard_type.sensor_type;
switch (sensor_type) {
case SENSOR_TYPE_MEMORY:
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.lun = 0;
req.msg.cmd = BMC_GET_DEVICE_ID;
req.msg.data = NULL;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, " Error getting system info");
if (desc != NULL) {
free(desc);
desc = NULL;
}
return NULL;
} else if (rsp->ccode > 0) {
lprintf(LOG_ERR, " Error getting system info: %s",
val2str(rsp->ccode, completion_code_vals));
if (desc != NULL) {
free(desc);
desc = NULL;
}
return NULL;
}
/* check the chipset type */
oem_id = ipmi_get_oem_id(intf);
if (oem_id == 0) {
if (desc != NULL) {
free(desc);
desc = NULL;
}
return NULL;
}
for (i = 0; supermicro_X8[i] != 0xFFFF; i++) {
if (oem_id == supermicro_X8[i]) {
chipset_type = 0;
break;
}
}
for (i = 0; supermicro_x9[i] != 0xFFFF; i++) {
if (oem_id == supermicro_x9[i]) {
chipset_type = 2;
break;
}
}
if (chipset_type == 0) {
snprintf(desc, SIZE_OF_DESC, "@DIMM%2X(CPU%x)",
data2,
(data3 & 0x03) + 1);
} else if (chipset_type == 1) {
snprintf(desc, SIZE_OF_DESC, "@DIMM%c%c(CPU%x)",
(data2 >> 4) + 0x40 + (data3 & 0x3) * 4,
(data2 & 0xf) + 0x27, (data3 & 0x03) + 1);
} else if (chipset_type == 2) {
snprintf(desc, SIZE_OF_DESC, "@DIMM%c%c(CPU%x)",
(data2 >> 4) + 0x40 + (data3 & 0x3) * 3,
(data2 & 0xf) + 0x27, (data3 & 0x03) + 1);
} else {
/* No description. */
desc[0] = '\0';
}
break;
case SENSOR_TYPE_SUPERMICRO_OEM:
if (data1 == 0x80 && data3 == 0xFF) {
if (data2 == 0x0) {
snprintf(desc, SIZE_OF_DESC, "BMC unexpected reset");
} else if (data2 == 0x1) {
snprintf(desc, SIZE_OF_DESC, "BMC cold reset");
} else if (data2 == 0x2) {
snprintf(desc, SIZE_OF_DESC, "BMC warm reset");
}
}
break;
}
return desc;
}
/*
* Function : Decoding the SEL OEM Bytes for the DELL Platforms.
* Description : The below fucntion will decode the SEL Events OEM Bytes for the Dell specific Sensors only.
* The below function will append the additional information Strings/description to the normal sel desc.
* With this the SEL will display additional information sent via OEM Bytes of the SEL Record.
* NOTE : Specific to DELL Platforms only.
* Returns : Pointer to the char string.
*/
char * get_dell_evt_desc(struct ipmi_intf * intf, struct sel_event_record * rec)
{
int data1, data2, data3;
int sensor_type;
char *desc = NULL;
unsigned char count;
unsigned char node;
unsigned char dimmNum;
unsigned char dimmsPerNode;
char dimmStr[MAX_DIMM_STR];
char tmpdesc[SIZE_OF_DESC];
char* str;
unsigned char incr = 0;
unsigned char i=0,j = 0;
struct ipmi_rs *rsp;
struct ipmi_rq req;
char tmpData;
int version;
/* Get the OEM event Bytes of the SEL Records byte 13, 14, 15 to Data1,data2,data3 */
data1 = rec->sel_type.standard_type.event_data[0];
data2 = rec->sel_type.standard_type.event_data[1];
data3 = rec->sel_type.standard_type.event_data[2];
/* Check for the Standard Event type == 0x6F */
if (0x6F == rec->sel_type.standard_type.event_type)
{
sensor_type = rec->sel_type.standard_type.sensor_type;
/* Allocate mem for te Description string */
desc = (char*)malloc(SIZE_OF_DESC);
if(NULL == desc)
return NULL;
memset(desc,0,SIZE_OF_DESC);
memset(tmpdesc,0,SIZE_OF_DESC);
switch (sensor_type) {
case SENSOR_TYPE_PROCESSOR: /* Processor/CPU related OEM Sel Byte Decoding for DELL Platforms only */
if((OEM_CODE_IN_BYTE2 == (data1 & DATA_BYTE2_SPECIFIED_MASK)))
{
if(0x00 == (data1 & MASK_LOWER_NIBBLE))
snprintf(desc,SIZE_OF_DESC,"CPU Internal Err | ");
if(0x06 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc,SIZE_OF_DESC,"CPU Protocol Err | ");
}
/* change bit location to a number */
for (count= 0; count < 8; count++)
{
if (BIT(count)& data2)
{
count++;
/* 0x0A - CPU sensor number */
if((0x06 == (data1 & MASK_LOWER_NIBBLE)) && (0x0A == rec->sel_type.standard_type.sensor_num))
snprintf(desc,SIZE_OF_DESC,"FSB %d ",count); // Which CPU Has generated the FSB
else
snprintf(desc,SIZE_OF_DESC,"CPU %d | APIC ID %d ",count,data3); /* Specific CPU related info */
break;
}
}
}
break;
case SENSOR_TYPE_MEMORY: /* Memory or DIMM related OEM Sel Byte Decoding for DELL Platforms only */
case SENSOR_TYPE_EVT_LOG: /* Events Logging for Memory or DIMM related OEM Sel Byte Decoding for DELL Platforms only */
/* Get the current version of the IPMI Spec Based on that Decoding of memory info is done.*/
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.lun = 0;
req.msg.cmd = BMC_GET_DEVICE_ID;
req.msg.data = NULL;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (NULL == rsp)
{
lprintf(LOG_ERR, " Error getting system info");
if (desc != NULL) {
free(desc);
desc = NULL;
}
return NULL;
}
else if (rsp->ccode > 0)
{
lprintf(LOG_ERR, " Error getting system info: %s",
val2str(rsp->ccode, completion_code_vals));
if (desc != NULL) {
free(desc);
desc = NULL;
}
return NULL;
}
version = rsp->data[4];
/* Memory DIMMS */
if( (data1 & OEM_CODE_IN_BYTE2) || (data1 & OEM_CODE_IN_BYTE3 ) )
{
/* Memory Redundancy related oem bytes docoding .. */
if( (SENSOR_TYPE_MEMORY == sensor_type) && (0x0B == rec->sel_type.standard_type.event_type) )
{
if(0x00 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc,SIZE_OF_DESC," Redundancy Regained | ");
}
else if(0x01 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc,SIZE_OF_DESC,"Redundancy Lost | ");
}
} /* Correctable and uncorrectable ECC Error Decoding */
else if(SENSOR_TYPE_MEMORY == sensor_type)
{
if(0x00 == (data1 & MASK_LOWER_NIBBLE))
{
/* 0x1C - Memory Sensor Number */
if(0x1C == rec->sel_type.standard_type.sensor_num)
{
/*Add the complete information about the Memory Configs.*/
if((data1 & OEM_CODE_IN_BYTE2) && (data1 & OEM_CODE_IN_BYTE3 ))
{
count = 0;
snprintf(desc,SIZE_OF_DESC,"CRC Error on:");
for(i=0;i<4;i++)
{
if((BIT(i))&(data2))
{
if(count)
{
str = desc+strlen(desc);
*str++ = ',';
str = '\0';
count = 0;
}
switch(i) /* Which type of memory config is present.. */
{
case 0: snprintf(tmpdesc,SIZE_OF_DESC,"South Bound Memory");
strcat(desc,tmpdesc);
count++;
break;
case 1: snprintf(tmpdesc,SIZE_OF_DESC,"South Bound Config");
strcat(desc,tmpdesc);
count++;
break;
case 2: snprintf(tmpdesc,SIZE_OF_DESC,"North Bound memory");
strcat(desc,tmpdesc);
count++;
break;
case 3: snprintf(tmpdesc,SIZE_OF_DESC,"North Bound memory-corr");
strcat(desc,tmpdesc);
count++;
break;
default:
break;
}
}
}
if(data3>=0x00 && data3<0xFF)
{
snprintf(tmpdesc,SIZE_OF_DESC,"|Failing_Channel:%d",data3);
strcat(desc,tmpdesc);
}
}
break;
}
snprintf(desc,SIZE_OF_DESC,"Correctable ECC | ");
}
else if(0x01 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc,SIZE_OF_DESC,"UnCorrectable ECC | ");
}
} /* Corr Memory log disabled */
else if(SENSOR_TYPE_EVT_LOG == sensor_type)
{
if(0x00 == (data1 & MASK_LOWER_NIBBLE))
snprintf(desc,SIZE_OF_DESC,"Corr Memory Log Disabled | ");
}
}
else
{
if(SENSOR_TYPE_SYS_EVENT == sensor_type)
{
if(0x02 == (data1 & MASK_LOWER_NIBBLE))
snprintf(desc,SIZE_OF_DESC,"Unknown System Hardware Failure ");
}
if(SENSOR_TYPE_EVT_LOG == sensor_type)
{
if(0x03 == (data1 & MASK_LOWER_NIBBLE))
snprintf(desc,SIZE_OF_DESC,"All Even Logging Dissabled");
}
}
/*
* Based on the above error, we need to find whcih memory slot or
* Card has got the Errors/Sel Generated.
*/
if(data1 & OEM_CODE_IN_BYTE2 )
{
/* Find the Card Type */
if((0x0F != (data2 >> 4)) && ((data2 >> 4) < 0x08))
{
tmpData = ('A'+ (data2 >> 4));
if( (SENSOR_TYPE_MEMORY == sensor_type) && (0x0B == rec->sel_type.standard_type.event_type) )
{
snprintf(tmpdesc, SIZE_OF_DESC, "Bad Card %c", tmpData);
}
else
{
snprintf(tmpdesc, SIZE_OF_DESC, "Card %c", tmpData);
}
strcat(desc, tmpdesc);
} /* Find the Bank Number of the DIMM */
if (0x0F != (data2 & MASK_LOWER_NIBBLE))
{
if(0x51 == version)
{
snprintf(tmpdesc, SIZE_OF_DESC, "Bank %d", ((data2 & 0x0F)+1));
strcat(desc, tmpdesc);
}
else
{
incr = (data2 & 0x0f) << 3;
}
}
}
/* Find the DIMM Number of the Memory which has Generated the Fault or Sel */
if(data1 & OEM_CODE_IN_BYTE3 )
{
// Based on the IPMI Spec Need Identify the DIMM Details.
// For the SPEC 1.5 Only the DIMM Number is Valid.
if(0x51 == version)
{
snprintf(tmpdesc, SIZE_OF_DESC, "DIMM %c", ('A'+ data3));
strcat(desc, tmpdesc);
}
/* For the SPEC 2.0 Decode the DIMM Number as it supports more.*/
else if( ((data2 >> 4) > 0x07) && (0x0F != (data2 >> 4) ))
{
strcpy(dimmStr, " DIMM");
str = desc+strlen(desc);
dimmsPerNode = 4;
if(0x09 == (data2 >> 4)) dimmsPerNode = 6;
else if(0x0A == (data2 >> 4)) dimmsPerNode = 8;
else if(0x0B == (data2 >> 4)) dimmsPerNode = 9;
else if(0x0C == (data2 >> 4)) dimmsPerNode = 12;
else if(0x0D == (data2 >> 4)) dimmsPerNode = 24;
else if(0x0E == (data2 >> 4)) dimmsPerNode = 3;
count = 0;
for (i = 0; i < 8; i++)
{
if (BIT(i) & data3)
{
if(count)
{
strcat(str,",");
count = 0x00;
}
node = (incr + i)/dimmsPerNode;
dimmNum = ((incr + i)%dimmsPerNode)+1;
dimmStr[5] = node + 'A';
sprintf(tmpdesc,"%d",dimmNum);
for(j = 0; j < strlen(tmpdesc);j++)
dimmStr[6+j] = tmpdesc[j];
dimmStr[6+j] = '\0';
strcat(str,dimmStr); // final DIMM Details.
count++;
}
}
}
else
{
strcpy(dimmStr, " DIMM");
str = desc+strlen(desc);
count = 0;
for (i = 0; i < 8; i++)
{
if (BIT(i) & data3)
{
// check if more than one DIMM, if so add a comma to the string.
sprintf(tmpdesc,"%d",(i + incr + 1));
if(count)
{
strcat(str,",");
count = 0x00;
}
for(j = 0; j < strlen(tmpdesc);j++)
dimmStr[5+j] = tmpdesc[j];
dimmStr[5+j] = '\0';
strcat(str, dimmStr);
count++;
}
}
}
}
break;
/* Sensor In system charectorization Error Decoding.
Sensor type 0x20*/
case SENSOR_TYPE_TXT_CMD_ERROR:
if((0x00 == (data1 & MASK_LOWER_NIBBLE))&&((data1 & OEM_CODE_IN_BYTE2) && (data1 & OEM_CODE_IN_BYTE3)))
{
switch(data3)
{
case 0x01:
snprintf(desc,SIZE_OF_DESC,"BIOS TXT Error");
break;
case 0x02:
snprintf(desc,SIZE_OF_DESC,"Processor/FIT TXT");
break;
case 0x03:
snprintf(desc,SIZE_OF_DESC,"BIOS ACM TXT Error");
break;
case 0x04:
snprintf(desc,SIZE_OF_DESC,"SINIT ACM TXT Error");
break;
case 0xff:
snprintf(desc,SIZE_OF_DESC,"Unrecognized TT Error12");
break;
default:
break;
}
}
break;
/* OS Watch Dog Timer Sel Events */
case SENSOR_TYPE_WTDOG:
if(SENSOR_TYPE_OEM_SEC_EVENT == data1)
{
if(0x04 == data2)
{
snprintf(desc,SIZE_OF_DESC,"Hard Reset|Interrupt type None,SMS/OS Timer used at expiration");
}
}
break;
/* This Event is for BMC to Othe Hardware or CPU . */
case SENSOR_TYPE_VER_CHANGE:
if((0x02 == (data1 & MASK_LOWER_NIBBLE))&&((data1 & OEM_CODE_IN_BYTE2) && (data1 & OEM_CODE_IN_BYTE3)))
{
if(0x02 == data2)
{
if(0x00 == data3)
{
snprintf(desc, SIZE_OF_DESC, "between BMC/iDRAC Firmware and other hardware");
}
else if(0x01 == data3)
{
snprintf(desc, SIZE_OF_DESC, "between BMC/iDRAC Firmware and CPU");
}
}
}
break;
/* Flex or Mac tuning OEM Decoding for the DELL. */
case SENSOR_TYPE_OEM_SEC_EVENT:
/* 0x25 - Virtual MAC sensory number - Dell OEM */
if(0x25 == rec->sel_type.standard_type.sensor_num)
{
if(0x01 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc, SIZE_OF_DESC, "Failed to program Virtual Mac Address");
if((data1 & OEM_CODE_IN_BYTE2)&&(data1 & OEM_CODE_IN_BYTE3))
{
snprintf(tmpdesc, SIZE_OF_DESC, " at bus:%.2x device:%.2x function:%x",
data3 &0x7F, (data2 >> 3) & 0x1F,
data2 & 0x07);
strcat(desc,tmpdesc);
}
}
else if(0x02 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc, SIZE_OF_DESC, "Device option ROM failed to support link tuning or flex address");
}
else if(0x03 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc, SIZE_OF_DESC, "Failed to get link tuning or flex address data from BMC/iDRAC");
}
}
break;
case SENSOR_TYPE_CRIT_INTR:
case SENSOR_TYPE_OEM_NFATAL_ERROR: /* Non - Fatal PCIe Express Error Decoding */
case SENSOR_TYPE_OEM_FATAL_ERROR: /* Fatal IO Error Decoding */
/* 0x29 - QPI Linx Error Sensor Dell OEM */
if(0x29 == rec->sel_type.standard_type.sensor_num)
{
if((0x02 == (data1 & MASK_LOWER_NIBBLE))&&((data1 & OEM_CODE_IN_BYTE2) && (data1 & OEM_CODE_IN_BYTE3)))
{
snprintf(tmpdesc, SIZE_OF_DESC, "Partner-(LinkId:%d,AgentId:%d)|",(data2 & 0xC0),(data2 & 0x30));
strcat(desc,tmpdesc);
snprintf(tmpdesc, SIZE_OF_DESC, "ReportingAgent(LinkId:%d,AgentId:%d)|",(data2 & 0x0C),(data2 & 0x03));
strcat(desc,tmpdesc);
if(0x00 == (data3 & 0xFC))
{
snprintf(tmpdesc, SIZE_OF_DESC, "LinkWidthDegraded|");
strcat(desc,tmpdesc);
}
if(BIT(1)& data3)
{
snprintf(tmpdesc,SIZE_OF_DESC,"PA_Type:IOH|");
}
else
{
snprintf(tmpdesc,SIZE_OF_DESC,"PA-Type:CPU|");
}
strcat(desc,tmpdesc);
if(BIT(0)& data3)
{
snprintf(tmpdesc,SIZE_OF_DESC,"RA-Type:IOH");
}
else
{
snprintf(tmpdesc,SIZE_OF_DESC,"RA-Type:CPU");
}
strcat(desc,tmpdesc);
}
}
else
{
if(0x02 == (data1 & MASK_LOWER_NIBBLE))
{
sprintf(desc,"%s","IO channel Check NMI");
}
else
{
if(0x00 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc, SIZE_OF_DESC, "%s","PCIe Error |");
}
else if(0x01 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc, SIZE_OF_DESC, "%s","I/O Error |");
}
else if(0x04 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc, SIZE_OF_DESC, "%s","PCI PERR |");
}
else if(0x05 == (data1 & MASK_LOWER_NIBBLE))
{
snprintf(desc, SIZE_OF_DESC, "%s","PCI SERR |");
}
else
{
snprintf(desc, SIZE_OF_DESC, "%s"," ");
}
if (data3 & 0x80)
snprintf(tmpdesc, SIZE_OF_DESC, "Slot %d", data3 & 0x7F);
else
snprintf(tmpdesc, SIZE_OF_DESC, "PCI bus:%.2x device:%.2x function:%x",
data3 &0x7F, (data2 >> 3) & 0x1F,
data2 & 0x07);
strcat(desc,tmpdesc);
}
}
break;
/* POST Fatal Errors generated from the Server with much more info*/
case SENSOR_TYPE_FRM_PROG:
if((0x0F == (data1 & MASK_LOWER_NIBBLE))&&(data1 & OEM_CODE_IN_BYTE2))
{
switch(data2)
{
case 0x80:
snprintf(desc, SIZE_OF_DESC, "No memory is detected.");break;
case 0x81:
snprintf(desc,SIZE_OF_DESC, "Memory is detected but is not configurable.");break;
case 0x82:
snprintf(desc, SIZE_OF_DESC, "Memory is configured but not usable.");break;
case 0x83:
snprintf(desc, SIZE_OF_DESC, "System BIOS shadow failed.");break;
case 0x84:
snprintf(desc, SIZE_OF_DESC, "CMOS failed.");break;
case 0x85:
snprintf(desc, SIZE_OF_DESC, "DMA controller failed.");break;
case 0x86:
snprintf(desc, SIZE_OF_DESC, "Interrupt controller failed.");break;
case 0x87:
snprintf(desc, SIZE_OF_DESC, "Timer refresh failed.");break;
case 0x88:
snprintf(desc, SIZE_OF_DESC, "Programmable interval timer error.");break;
case 0x89:
snprintf(desc, SIZE_OF_DESC, "Parity error.");break;
case 0x8A:
snprintf(desc, SIZE_OF_DESC, "SIO failed.");break;
case 0x8B:
snprintf(desc, SIZE_OF_DESC, "Keyboard controller failed.");break;
case 0x8C:
snprintf(desc, SIZE_OF_DESC, "System management interrupt initialization failed.");break;
case 0x8D:
snprintf(desc, SIZE_OF_DESC, "TXT-SX Error.");break;
case 0xC0:
snprintf(desc, SIZE_OF_DESC, "Shutdown test failed.");break;
case 0xC1:
snprintf(desc, SIZE_OF_DESC, "BIOS POST memory test failed.");break;
case 0xC2:
snprintf(desc, SIZE_OF_DESC, "RAC configuration failed.");break;
case 0xC3:
snprintf(desc, SIZE_OF_DESC, "CPU configuration failed.");break;
case 0xC4:
snprintf(desc, SIZE_OF_DESC, "Incorrect memory configuration.");break;
case 0xFE:
snprintf(desc, SIZE_OF_DESC, "General failure after video.");
break;
}
}
break;
default:
break;
}
}
else
{
sensor_type = rec->sel_type.standard_type.event_type;
}
return desc;
}
char *
ipmi_get_oem_desc(struct ipmi_intf * intf, struct sel_event_record * rec)
{
char * desc = NULL;
switch (ipmi_get_oem(intf))
{
case IPMI_OEM_NEWISYS:
desc = get_newisys_evt_desc(intf, rec);
break;
case IPMI_OEM_KONTRON:
desc = get_kontron_evt_desc(intf, rec);
break;
case IPMI_OEM_DELL: // Dell Decoding of the OEM Bytes from SEL Record.
desc = get_dell_evt_desc(intf, rec);
break;
case IPMI_OEM_SUPERMICRO:
case IPMI_OEM_SUPERMICRO_47488:
desc = get_supermicro_evt_desc(intf, rec);
break;
case IPMI_OEM_UNKNOWN:
default:
break;
}
return desc;
}
const struct ipmi_event_sensor_types *
ipmi_get_first_event_sensor_type(struct ipmi_intf *intf,
uint8_t sensor_type, uint8_t event_type)
{
const struct ipmi_event_sensor_types *evt, *start, *next = NULL;
uint8_t code;
if (event_type == 0x6f) {
if (sensor_type >= 0xC0
&& sensor_type < 0xF0
&& ipmi_get_oem(intf) == IPMI_OEM_KONTRON) {
/* check Kontron OEM sensor event types */
start = oem_kontron_event_types;
} else if (intf->vita_avail) {
/* check VITA sensor event types first */
start = vita_sensor_event_types;
/* then check generic sensor types */
next = sensor_specific_event_types;
} else {
/* check generic sensor types */
start = sensor_specific_event_types;
}
code = sensor_type;
} else {
start = generic_event_types;
code = event_type;
}
for (evt = start; evt->desc != NULL || next != NULL; evt++) {
/* check if VITA sensor event types has finished */
if (evt->desc == NULL) {
/* proceed with next table */
evt = next;
next = NULL;
}
if (code == evt->code)
return evt;
}
return NULL;
}
const struct ipmi_event_sensor_types *
ipmi_get_next_event_sensor_type(const struct ipmi_event_sensor_types *evt)
{
const struct ipmi_event_sensor_types *start = evt;
for (evt = start + 1; evt->desc != NULL; evt++) {
if (evt->code == start->code) {
return evt;
}
}
return NULL;
}
void
ipmi_get_event_desc(struct ipmi_intf * intf, struct sel_event_record * rec, char ** desc)
{
uint8_t offset;
const struct ipmi_event_sensor_types *evt = NULL;
char *sfx = NULL; /* This will be assigned if the Platform is DELL,
additional info is appended to the current Description */
if (desc == NULL)
return;
*desc = NULL;
if ((rec->sel_type.standard_type.event_type >= 0x70) && (rec->sel_type.standard_type.event_type < 0x7F)) {
*desc = ipmi_get_oem_desc(intf, rec);
return;
} else if (rec->sel_type.standard_type.event_type == 0x6f) {
if( rec->sel_type.standard_type.sensor_type >= 0xC0 && rec->sel_type.standard_type.sensor_type < 0xF0) {
IPMI_OEM iana = ipmi_get_oem(intf);
switch(iana){
case IPMI_OEM_KONTRON:
lprintf(LOG_DEBUG, "oem sensor type %x %d using oem type supplied description",
rec->sel_type.standard_type.sensor_type , iana);
break;
case IPMI_OEM_DELL: /* OEM Bytes Decoding for DELLi */
if ( (OEM_CODE_IN_BYTE2 == (rec->sel_type.standard_type.event_data[0] & DATA_BYTE2_SPECIFIED_MASK)) ||
(OEM_CODE_IN_BYTE3 == (rec->sel_type.standard_type.event_data[0] & DATA_BYTE3_SPECIFIED_MASK)) )
{
sfx = ipmi_get_oem_desc(intf, rec);
}
break;
case IPMI_OEM_SUPERMICRO:
case IPMI_OEM_SUPERMICRO_47488:
sfx = ipmi_get_oem_desc(intf, rec);
break;
/* add your oem sensor assignation here */
default:
lprintf(LOG_DEBUG, "oem sensor type %x using standard type supplied description",
rec->sel_type.standard_type.sensor_type );
break;
}
} else {
switch (ipmi_get_oem(intf)) {
case IPMI_OEM_SUPERMICRO:
case IPMI_OEM_SUPERMICRO_47488:
sfx = ipmi_get_oem_desc(intf, rec);
break;
default:
break;
}
}
/*
* Check for the OEM DELL Interface based on the Dell Specific Vendor Code.
* If its Dell Platform, do the OEM Byte decode from the SEL Records.
* Additional information should be written by the ipmi_get_oem_desc()
*/
if(ipmi_get_oem(intf) == IPMI_OEM_DELL) {
if ( (OEM_CODE_IN_BYTE2 == (rec->sel_type.standard_type.event_data[0] & DATA_BYTE2_SPECIFIED_MASK)) ||
(OEM_CODE_IN_BYTE3 == (rec->sel_type.standard_type.event_data[0] & DATA_BYTE3_SPECIFIED_MASK)) )
{
sfx = ipmi_get_oem_desc(intf, rec);
}
else if(SENSOR_TYPE_OEM_SEC_EVENT == rec->sel_type.standard_type.event_data[0])
{
/* 0x23 : Sensor Number.*/
if(0x23 == rec->sel_type.standard_type.sensor_num)
sfx = ipmi_get_oem_desc(intf, rec);
}
}
}
offset = rec->sel_type.standard_type.event_data[0] & 0xf;
for (evt = ipmi_get_first_event_sensor_type(intf,
rec->sel_type.standard_type.sensor_type,
rec->sel_type.standard_type.event_type);
evt != NULL; evt = ipmi_get_next_event_sensor_type(evt)) {
if ((evt->offset == offset && evt->desc != NULL) &&
((evt->data == ALL_OFFSETS_SPECIFIED) ||
((rec->sel_type.standard_type.event_data[0] & DATA_BYTE2_SPECIFIED_MASK) &&
(evt->data == rec->sel_type.standard_type.event_data[1]))))
{
/* Increase the Malloc size to current_size + Dellspecific description size */
*desc = (char *)malloc(strlen(evt->desc) + 48 + SIZE_OF_DESC);
if (NULL == *desc) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return;
}
memset(*desc, 0, strlen(evt->desc)+ 48 + SIZE_OF_DESC);
/*
* Additional info is present for the DELL Platforms.
* Append the same to the evt->desc string.
*/
if (sfx) {
sprintf(*desc, "%s (%s)", evt->desc, sfx);
free(sfx);
sfx = NULL;
} else {
sprintf(*desc, "%s", evt->desc);
}
return;
}
}
/* The Above while Condition was not met beacouse the below sensor type were Newly defined OEM
Secondary Events. 0xC1, 0xC2, 0xC3. */
if((sfx) && (0x6F == rec->sel_type.standard_type.event_type))
{
uint8_t flag = 0x00;
switch(rec->sel_type.standard_type.sensor_type)
{
case SENSOR_TYPE_FRM_PROG:
if(0x0F == offset)
flag = 0x01;
break;
case SENSOR_TYPE_OEM_SEC_EVENT:
if((0x01 == offset) || (0x02 == offset) || (0x03 == offset))
flag = 0x01;
break;
case SENSOR_TYPE_OEM_NFATAL_ERROR:
if((0x00 == offset) || (0x02 == offset))
flag = 0x01;
break;
case SENSOR_TYPE_OEM_FATAL_ERROR:
if(0x01 == offset)
flag = 0x01;
break;
case SENSOR_TYPE_SUPERMICRO_OEM:
flag = 0x02;
break;
default:
break;
}
if(flag)
{
*desc = (char *)malloc( 48 + SIZE_OF_DESC);
if (NULL == *desc)
{
lprintf(LOG_ERR, "ipmitool: malloc failure");
return;
}
memset(*desc, 0, 48 + SIZE_OF_DESC);
if (flag == 0x02) {
sprintf(*desc, "%s", sfx);
return;
}
sprintf(*desc, "(%s)",sfx);
}
free(sfx);
sfx = NULL;
}
}
const char*
ipmi_get_generic_sensor_type(uint8_t code)
{
if (code <= SENSOR_TYPE_MAX) {
return ipmi_generic_sensor_type_vals[code];
}
return NULL;
}
const char *
ipmi_get_oem_sensor_type(struct ipmi_intf *intf, uint8_t code)
{
const struct oemvalstr *v, *found = NULL;
uint32_t iana = ipmi_get_oem(intf);
for (v = ipmi_oem_sensor_type_vals; v->str; v++) {
if (v->oem == iana && v->val == code) {
return v->str;
}
if ((intf->picmg_avail
&& v->oem == IPMI_OEM_PICMG
&& v->val == code)
|| (intf->vita_avail
&& v->oem == IPMI_OEM_VITA
&& v->val == code)) {
found = v;
}
}
return found ? found->str : NULL;
}
const char *
ipmi_get_sensor_type(struct ipmi_intf *intf, uint8_t code)
{
const char *type;
if (code >= 0xC0) {
type = ipmi_get_oem_sensor_type(intf, code);
} else {
type = ipmi_get_generic_sensor_type(code);
}
if (type == NULL) {
type = "Unknown";
}
return type;
}
static int
ipmi_sel_get_info(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
uint16_t e, version;
uint32_t f;
int pctfull = 0;
uint32_t fs = 0xffffffff;
uint32_t zeros = 0;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_GET_SEL_INFO;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get SEL Info command failed");
return -1;
} else if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get SEL Info command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
} else if (rsp->data_len != 14) {
lprintf(LOG_ERR, "Get SEL Info command failed: "
"Invalid data length %d", rsp->data_len);
return (-1);
}
if (verbose > 2)
printbuf(rsp->data, rsp->data_len, "sel_info");
printf("SEL Information\n");
version = rsp->data[0];
printf("Version : %d.%d (%s)\n",
version & 0xf, (version>>4) & 0xf,
(version == 0x51 || version == 0x02) ? "v1.5, v2 compliant" : "Unknown");
/* save the entry count and free space to determine percent full */
e = buf2short(rsp->data + 1);
f = buf2short(rsp->data + 3);
printf("Entries : %d\n", e);
printf("Free Space : %d bytes %s\n", f ,(f==65535 ? "or more" : "" ));
if (e) {
e *= 16; /* each entry takes 16 bytes */
f += e; /* this is supposed to give the total size ... */
pctfull = (int)(100 * ( (double)e / (double)f ));
}
if( f >= 65535 ) {
printf("Percent Used : %s\n", "unknown" );
}
else {
printf("Percent Used : %d%%\n", pctfull);
}
if ((!memcmp(rsp->data + 5, &fs, 4)) ||
(!memcmp(rsp->data + 5, &zeros, 4)))
printf("Last Add Time : Not Available\n");
else
printf("Last Add Time : %s\n",
ipmi_sel_timestamp(buf2long(rsp->data + 5)));
if ((!memcmp(rsp->data + 9, &fs, 4)) ||
(!memcmp(rsp->data + 9, &zeros, 4)))
printf("Last Del Time : Not Available\n");
else
printf("Last Del Time : %s\n",
ipmi_sel_timestamp(buf2long(rsp->data + 9)));
printf("Overflow : %s\n",
rsp->data[13] & 0x80 ? "true" : "false");
printf("Supported Cmds : ");
if (rsp->data[13] & 0x0f)
{
if (rsp->data[13] & 0x08)
printf("'Delete' ");
if (rsp->data[13] & 0x04)
printf("'Partial Add' ");
if (rsp->data[13] & 0x02)
printf("'Reserve' ");
if (rsp->data[13] & 0x01)
printf("'Get Alloc Info' ");
}
else
printf("None");
printf("\n");
/* get sel allocation info if supported */
if (rsp->data[13] & 1) {
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_GET_SEL_ALLOC_INFO;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR,
"Get SEL Allocation Info command failed");
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR,
"Get SEL Allocation Info command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
printf("# of Alloc Units : %d\n", buf2short(rsp->data));
printf("Alloc Unit Size : %d\n", buf2short(rsp->data + 2));
printf("# Free Units : %d\n", buf2short(rsp->data + 4));
printf("Largest Free Blk : %d\n", buf2short(rsp->data + 6));
printf("Max Record Size : %d\n", rsp->data[8]);
}
return 0;
}
uint16_t
ipmi_sel_get_std_entry(struct ipmi_intf * intf, uint16_t id,
struct sel_event_record * evt)
{
struct ipmi_rq req;
struct ipmi_rs * rsp;
uint8_t msg_data[6];
uint16_t next;
int data_count;
memset(msg_data, 0, 6);
msg_data[0] = 0x00; /* no reserve id, not partial get */
msg_data[1] = 0x00;
msg_data[2] = id & 0xff;
msg_data[3] = (id >> 8) & 0xff;
msg_data[4] = 0x00; /* offset */
msg_data[5] = 0xff; /* length */
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_GET_SEL_ENTRY;
req.msg.data = msg_data;
req.msg.data_len = 6;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get SEL Entry %x command failed", id);
return 0;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get SEL Entry %x command failed: %s",
id, val2str(rsp->ccode, completion_code_vals));
return 0;
}
/* save next entry id */
next = (rsp->data[1] << 8) | rsp->data[0];
lprintf(LOG_DEBUG, "SEL Entry: %s", buf2str(rsp->data+2, rsp->data_len-2));
memset(evt, 0, sizeof(*evt));
/*Clear SEL Structure*/
evt->record_id = 0;
evt->record_type = 0;
if (evt->record_type < 0xc0)
{
evt->sel_type.standard_type.timestamp = 0;
evt->sel_type.standard_type.gen_id = 0;
evt->sel_type.standard_type.evm_rev = 0;
evt->sel_type.standard_type.sensor_type = 0;
evt->sel_type.standard_type.sensor_num = 0;
evt->sel_type.standard_type.event_type = 0;
evt->sel_type.standard_type.event_dir = 0;
evt->sel_type.standard_type.event_data[0] = 0;
evt->sel_type.standard_type.event_data[1] = 0;
evt->sel_type.standard_type.event_data[2] = 0;
}
else if (evt->record_type < 0xe0)
{
evt->sel_type.oem_ts_type.timestamp = 0;
evt->sel_type.oem_ts_type.manf_id[0] = 0;
evt->sel_type.oem_ts_type.manf_id[1] = 0;
evt->sel_type.oem_ts_type.manf_id[2] = 0;
for(data_count=0; data_count < SEL_OEM_TS_DATA_LEN ; data_count++)
evt->sel_type.oem_ts_type.oem_defined[data_count] = 0;
}
else
{
for(data_count=0; data_count < SEL_OEM_NOTS_DATA_LEN ; data_count++)
evt->sel_type.oem_nots_type.oem_defined[data_count] = 0;
}
/* save response into SEL event structure */
evt->record_id = (rsp->data[3] << 8) | rsp->data[2];
evt->record_type = rsp->data[4];
if (evt->record_type < 0xc0)
{
evt->sel_type.standard_type.timestamp = (rsp->data[8] << 24) | (rsp->data[7] << 16) |
(rsp->data[6] << 8) | rsp->data[5];
evt->sel_type.standard_type.gen_id = (rsp->data[10] << 8) | rsp->data[9];
evt->sel_type.standard_type.evm_rev = rsp->data[11];
evt->sel_type.standard_type.sensor_type = rsp->data[12];
evt->sel_type.standard_type.sensor_num = rsp->data[13];
evt->sel_type.standard_type.event_type = rsp->data[14] & 0x7f;
evt->sel_type.standard_type.event_dir = (rsp->data[14] & 0x80) >> 7;
evt->sel_type.standard_type.event_data[0] = rsp->data[15];
evt->sel_type.standard_type.event_data[1] = rsp->data[16];
evt->sel_type.standard_type.event_data[2] = rsp->data[17];
}
else if (evt->record_type < 0xe0)
{
evt->sel_type.oem_ts_type.timestamp= (rsp->data[8] << 24) | (rsp->data[7] << 16) |
(rsp->data[6] << 8) | rsp->data[5];
evt->sel_type.oem_ts_type.manf_id[0]= rsp->data[11];
evt->sel_type.oem_ts_type.manf_id[1]= rsp->data[10];
evt->sel_type.oem_ts_type.manf_id[2]= rsp->data[9];
for(data_count=0; data_count < SEL_OEM_TS_DATA_LEN ; data_count++)
evt->sel_type.oem_ts_type.oem_defined[data_count] = rsp->data[(data_count+12)];
}
else
{
for(data_count=0; data_count < SEL_OEM_NOTS_DATA_LEN ; data_count++)
evt->sel_type.oem_nots_type.oem_defined[data_count] = rsp->data[(data_count+5)];
}
return next;
}
static void
ipmi_sel_print_event_file(struct ipmi_intf * intf, struct sel_event_record * evt, FILE * fp)
{
char * description;
if (fp == NULL)
return;
ipmi_get_event_desc(intf, evt, &description);
fprintf(fp, "0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x # %s #0x%02x %s\n",
evt->sel_type.standard_type.evm_rev,
evt->sel_type.standard_type.sensor_type,
evt->sel_type.standard_type.sensor_num,
evt->sel_type.standard_type.event_type | (evt->sel_type.standard_type.event_dir << 7),
evt->sel_type.standard_type.event_data[0],
evt->sel_type.standard_type.event_data[1],
evt->sel_type.standard_type.event_data[2],
ipmi_get_sensor_type(intf, evt->sel_type.standard_type.sensor_type),
evt->sel_type.standard_type.sensor_num,
(description != NULL) ? description : "Unknown");
if (description != NULL) {
free(description);
description = NULL;
}
}
void
ipmi_sel_print_extended_entry(struct ipmi_intf * intf, struct sel_event_record * evt)
{
sel_extended++;
ipmi_sel_print_std_entry(intf, evt);
sel_extended--;
}
void
ipmi_sel_print_std_entry(struct ipmi_intf * intf, struct sel_event_record * evt)
{
char * description;
struct sdr_record_list * sdr = NULL;
int data_count;
if (sel_extended && (evt->record_type < 0xc0))
sdr = ipmi_sdr_find_sdr_bynumtype(intf, evt->sel_type.standard_type.gen_id, evt->sel_type.standard_type.sensor_num, evt->sel_type.standard_type.sensor_type);
if (!evt)
return;
if (csv_output)
printf("%x,", evt->record_id);
else
printf("%4x | ", evt->record_id);
if (evt->record_type == 0xf0)
{
if (csv_output)
printf(",,");
printf ("Linux kernel panic: %.11s\n", (char *) evt + 5);
return;
}
if (evt->record_type < 0xe0)
{
if ((evt->sel_type.standard_type.timestamp < 0x20000000)||(evt->sel_type.oem_ts_type.timestamp < 0x20000000)){
printf(" Pre-Init ");
if (csv_output)
printf(",");
else
printf(" |");
printf("%010d", evt->sel_type.standard_type.timestamp );
if (csv_output)
printf(",");
else
printf("| ");
}
else {
if (evt->record_type < 0xc0)
printf("%s", ipmi_sel_timestamp_date(evt->sel_type.standard_type.timestamp));
else
printf("%s", ipmi_sel_timestamp_date(evt->sel_type.oem_ts_type.timestamp));
if (csv_output)
printf(",");
else
printf(" | ");
if (evt->record_type < 0xc0)
printf("%s", ipmi_sel_timestamp_time(evt->sel_type.standard_type.timestamp));
else
printf("%s", ipmi_sel_timestamp_time(evt->sel_type.oem_ts_type.timestamp));
if (csv_output)
printf(",");
else
printf(" | ");
}
}
else
{
if (csv_output)
printf(",,");
}
if (evt->record_type >= 0xc0)
{
printf ("OEM record %02x", evt->record_type);
if (csv_output)
printf(",");
else
printf(" | ");
if(evt->record_type <= 0xdf)
{
printf ("%02x%02x%02x", evt->sel_type.oem_ts_type.manf_id[0], evt->sel_type.oem_ts_type.manf_id[1], evt->sel_type.oem_ts_type.manf_id[2]);
if (csv_output)
printf(",");
else
printf(" | ");
for(data_count=0;data_count < SEL_OEM_TS_DATA_LEN;data_count++)
printf("%02x", evt->sel_type.oem_ts_type.oem_defined[data_count]);
}
else
{
for(data_count=0;data_count < SEL_OEM_NOTS_DATA_LEN;data_count++)
printf("%02x", evt->sel_type.oem_nots_type.oem_defined[data_count]);
}
ipmi_sel_oem_message(evt, 0);
printf ("\n");
return;
}
/* lookup SDR entry based on sensor number and type */
if (sdr != NULL) {
printf("%s ", ipmi_get_sensor_type(intf,
evt->sel_type.standard_type.sensor_type));
switch (sdr->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
printf("%s", sdr->record.full->id_string);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
printf("%s", sdr->record.compact->id_string);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
printf("%s", sdr->record.eventonly->id_string);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
printf("%s", sdr->record.fruloc->id_string);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
printf("%s", sdr->record.mcloc->id_string);
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
printf("%s", sdr->record.genloc->id_string);
break;
default:
printf("#%02x", evt->sel_type.standard_type.sensor_num);
break;
}
} else {
printf("%s", ipmi_get_sensor_type(intf,
evt->sel_type.standard_type.sensor_type));
if (evt->sel_type.standard_type.sensor_num != 0)
printf(" #0x%02x", evt->sel_type.standard_type.sensor_num);
}
if (csv_output)
printf(",");
else
printf(" | ");
ipmi_get_event_desc(intf, evt, &description);
if (description) {
printf("%s", description);
free(description);
description = NULL;
}
if (csv_output) {
printf(",");
} else {
printf(" | ");
}
if (evt->sel_type.standard_type.event_dir) {
printf("Deasserted");
} else {
printf("Asserted");
}
if (sdr != NULL && evt->sel_type.standard_type.event_type == 1) {
/*
* Threshold Event
*/
float trigger_reading = 0.0;
float threshold_reading = 0.0;
uint8_t threshold_reading_provided = 0;
/* trigger reading in event data byte 2 */
if (((evt->sel_type.standard_type.event_data[0] >> 6) & 3) == 1) {
trigger_reading = sdr_convert_sensor_reading(
sdr->record.full, evt->sel_type.standard_type.event_data[1]);
}
/* trigger threshold in event data byte 3 */
if (((evt->sel_type.standard_type.event_data[0] >> 4) & 3) == 1) {
threshold_reading = sdr_convert_sensor_reading(
sdr->record.full, evt->sel_type.standard_type.event_data[2]);
threshold_reading_provided = 1;
}
if (csv_output)
printf(",");
else
printf(" | ");
printf("Reading %.*f",
(trigger_reading==(int)trigger_reading) ? 0 : 2,
trigger_reading);
if (threshold_reading_provided) {
printf(" %s Threshold %.*f %s",
((evt->sel_type.standard_type.event_data[0] & 0xf) % 2) ? ">" : "<",
(threshold_reading==(int)threshold_reading) ? 0 : 2,
threshold_reading,
ipmi_sdr_get_unit_string(sdr->record.common->unit.pct,
sdr->record.common->unit.modifier,
sdr->record.common->unit.type.base,
sdr->record.common->unit.type.modifier));
}
}
else if (evt->sel_type.standard_type.event_type == 0x6f) {
int print_sensor = 1;
switch (ipmi_get_oem(intf)) {
case IPMI_OEM_SUPERMICRO:
case IPMI_OEM_SUPERMICRO_47488:
print_sensor = 0;
break;
default:
break;
}
/*
* Sensor-Specific Discrete
*/
if (print_sensor && evt->sel_type.standard_type.sensor_type == 0xC && /*TODO*/
evt->sel_type.standard_type.sensor_num == 0 &&
(evt->sel_type.standard_type.event_data[0] & 0x30) == 0x20) {
/* break down memory ECC reporting if we can */
if (csv_output)
printf(",");
else
printf(" | ");
printf("CPU %d DIMM %d",
evt->sel_type.standard_type.event_data[2] & 0x0f,
(evt->sel_type.standard_type.event_data[2] & 0xf0) >> 4);
}
}
printf("\n");
}
void
ipmi_sel_print_std_entry_verbose(struct ipmi_intf * intf, struct sel_event_record * evt)
{
char * description;
int data_count;
if (!evt)
return;
printf("SEL Record ID : %04x\n", evt->record_id);
if (evt->record_type == 0xf0)
{
printf (" Record Type : Linux kernel panic (OEM record %02x)\n", evt->record_type);
printf (" Panic string : %.11s\n\n", (char *) evt + 5);
return;
}
printf(" Record Type : %02x", evt->record_type);
if (evt->record_type >= 0xc0)
{
if (evt->record_type < 0xe0)
printf(" (OEM timestamped)");
else
printf(" (OEM non-timestamped)");
}
printf("\n");
if (evt->record_type < 0xe0)
{
printf(" Timestamp : ");
if (evt->record_type < 0xc0)
printf("%s %s", ipmi_sel_timestamp_date(evt->sel_type.standard_type.timestamp),
ipmi_sel_timestamp_time(evt->sel_type.standard_type.timestamp));
else
printf("%s %s", ipmi_sel_timestamp_date(evt->sel_type.oem_ts_type.timestamp),
ipmi_sel_timestamp_time(evt->sel_type.oem_ts_type.timestamp));
printf("\n");
}
if (evt->record_type >= 0xc0)
{
if(evt->record_type <= 0xdf)
{
printf (" Manufactacturer ID : %02x%02x%02x\n", evt->sel_type.oem_ts_type.manf_id[0],
evt->sel_type.oem_ts_type.manf_id[1], evt->sel_type.oem_ts_type.manf_id[2]);
printf (" OEM Defined : ");
for(data_count=0;data_count < SEL_OEM_TS_DATA_LEN;data_count++)
printf("%02x", evt->sel_type.oem_ts_type.oem_defined[data_count]);
printf(" [%s]\n\n",hex2ascii (evt->sel_type.oem_ts_type.oem_defined, SEL_OEM_TS_DATA_LEN));
}
else
{
printf (" OEM Defined : ");
for(data_count=0;data_count < SEL_OEM_NOTS_DATA_LEN;data_count++)
printf("%02x", evt->sel_type.oem_nots_type.oem_defined[data_count]);
printf(" [%s]\n\n",hex2ascii (evt->sel_type.oem_nots_type.oem_defined, SEL_OEM_NOTS_DATA_LEN));
ipmi_sel_oem_message(evt, 1);
}
return;
}
printf(" Generator ID : %04x\n",
evt->sel_type.standard_type.gen_id);
printf(" EvM Revision : %02x\n",
evt->sel_type.standard_type.evm_rev);
printf(" Sensor Type : %s\n",
ipmi_get_sensor_type(intf,
evt->sel_type.standard_type.sensor_type));
printf(" Sensor Number : %02x\n",
evt->sel_type.standard_type.sensor_num);
printf(" Event Type : %s\n",
ipmi_get_event_type(evt->sel_type.standard_type.event_type));
printf(" Event Direction : %s\n",
val2str(evt->sel_type.standard_type.event_dir, event_dir_vals));
printf(" Event Data : %02x%02x%02x\n",
evt->sel_type.standard_type.event_data[0], evt->sel_type.standard_type.event_data[1], evt->sel_type.standard_type.event_data[2]);
ipmi_get_event_desc(intf, evt, &description);
printf(" Description : %s\n",
description ? description : "");
free(description);
description = NULL;
printf("\n");
}
void
ipmi_sel_print_extended_entry_verbose(struct ipmi_intf * intf, struct sel_event_record * evt)
{
struct sdr_record_list * sdr;
char * description;
if (!evt)
return;
sdr = ipmi_sdr_find_sdr_bynumtype(intf,
evt->sel_type.standard_type.gen_id,
evt->sel_type.standard_type.sensor_num,
evt->sel_type.standard_type.sensor_type);
if (sdr == NULL)
{
ipmi_sel_print_std_entry_verbose(intf, evt);
return;
}
printf("SEL Record ID : %04x\n", evt->record_id);
if (evt->record_type == 0xf0)
{
printf (" Record Type : "
"Linux kernel panic (OEM record %02x)\n",
evt->record_type);
printf (" Panic string : %.11s\n\n",
(char *) evt + 5);
return;
}
printf(" Record Type : %02x\n", evt->record_type);
if (evt->record_type < 0xe0)
{
printf(" Timestamp : ");
printf("%s %s\n", ipmi_sel_timestamp_date(evt->sel_type.standard_type.timestamp),
ipmi_sel_timestamp_time(evt->sel_type.standard_type.timestamp));
}
printf(" Generator ID : %04x\n",
evt->sel_type.standard_type.gen_id);
printf(" EvM Revision : %02x\n",
evt->sel_type.standard_type.evm_rev);
printf(" Sensor Type : %s\n",
ipmi_get_sensor_type(intf, evt->sel_type.standard_type.sensor_type));
printf(" Sensor Number : %02x\n",
evt->sel_type.standard_type.sensor_num);
printf(" Event Type : %s\n",
ipmi_get_event_type(evt->sel_type.standard_type.event_type));
printf(" Event Direction : %s\n",
val2str(evt->sel_type.standard_type.event_dir, event_dir_vals));
printf(" Event Data (RAW) : %02x%02x%02x\n",
evt->sel_type.standard_type.event_data[0], evt->sel_type.standard_type.event_data[1], evt->sel_type.standard_type.event_data[2]);
/* break down event data field
* as per IPMI Spec 2.0 Table 29-6 */
if (evt->sel_type.standard_type.event_type == 1 && sdr->type == SDR_RECORD_TYPE_FULL_SENSOR) {
/* Threshold */
switch ((evt->sel_type.standard_type.event_data[0] >> 6) & 3) { /* EV1[7:6] */
case 0:
/* unspecified byte 2 */
break;
case 1:
/* trigger reading in byte 2 */
printf(" Trigger Reading : %.3f",
sdr_convert_sensor_reading(sdr->record.full,
evt->sel_type.standard_type.event_data[1]));
/* determine units with possible modifiers */
printf ("%s\n", ipmi_sdr_get_unit_string(sdr->record.common->unit.pct,
sdr->record.common->unit.modifier,
sdr->record.common->unit.type.base,
sdr->record.common->unit.type.modifier));
break;
case 2:
/* oem code in byte 2 */
printf(" OEM Data : %02x\n",
evt->sel_type.standard_type.event_data[1]);
break;
case 3:
/* sensor-specific extension code in byte 2 */
printf(" Sensor Extension Code : %02x\n",
evt->sel_type.standard_type.event_data[1]);
break;
}
switch ((evt->sel_type.standard_type.event_data[0] >> 4) & 3) { /* EV1[5:4] */
case 0:
/* unspecified byte 3 */
break;
case 1:
/* trigger threshold value in byte 3 */
printf(" Trigger Threshold : %.3f",
sdr_convert_sensor_reading(sdr->record.full,
evt->sel_type.standard_type.event_data[2]));
/* determine units with possible modifiers */
printf ("%s\n", ipmi_sdr_get_unit_string(sdr->record.common->unit.pct,
sdr->record.common->unit.modifier,
sdr->record.common->unit.type.base,
sdr->record.common->unit.type.modifier));
break;
case 2:
/* OEM code in byte 3 */
printf(" OEM Data : %02x\n",
evt->sel_type.standard_type.event_data[2]);
break;
case 3:
/* sensor-specific extension code in byte 3 */
printf(" Sensor Extension Code : %02x\n",
evt->sel_type.standard_type.event_data[2]);
break;
}
} else if (evt->sel_type.standard_type.event_type >= 0x2 && evt->sel_type.standard_type.event_type <= 0xc) {
/* Generic Discrete */
} else if (evt->sel_type.standard_type.event_type == 0x6f) {
/* Sensor-Specific Discrete */
if (evt->sel_type.standard_type.sensor_type == 0xC &&
evt->sel_type.standard_type.sensor_num == 0 && /**** THIS LOOK TO BE OEM ****/
(evt->sel_type.standard_type.event_data[0] & 0x30) == 0x20)
{
/* break down memory ECC reporting if we can */
printf(" Event Data : CPU %d DIMM %d\n",
evt->sel_type.standard_type.event_data[2] & 0x0f,
(evt->sel_type.standard_type.event_data[2] & 0xf0) >> 4);
}
else if(
evt->sel_type.standard_type.sensor_type == 0x2b && /* Version change */
evt->sel_type.standard_type.event_data[0] == 0xC1 /* Data in Data 2 */
)
{
//evt->sel_type.standard_type.event_data[1]
}
else
{
/* FIXME : Add sensor specific discrete types */
printf(" Event Interpretation : Missing\n");
}
} else if (evt->sel_type.standard_type.event_type >= 0x70 && evt->sel_type.standard_type.event_type <= 0x7f) {
/* OEM */
} else {
printf(" Event Data : %02x%02x%02x\n",
evt->sel_type.standard_type.event_data[0], evt->sel_type.standard_type.event_data[1], evt->sel_type.standard_type.event_data[2]);
}
ipmi_get_event_desc(intf, evt, &description);
printf(" Description : %s\n",
description ? description : "");
free(description);
description = NULL;
printf("\n");
}
static int
__ipmi_sel_savelist_entries(struct ipmi_intf * intf, int count, const char * savefile,
int binary)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
uint16_t next_id = 0, curr_id = 0;
struct sel_event_record evt;
int n=0;
FILE * fp = NULL;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_GET_SEL_INFO;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get SEL Info command failed");
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get SEL Info command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
if (verbose > 2)
printbuf(rsp->data, rsp->data_len, "sel_info");
if (rsp->data[1] == 0 && rsp->data[2] == 0) {
lprintf(LOG_ERR, "SEL has no entries");
return 0;
}
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_RESERVE_SEL;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Reserve SEL command failed");
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Reserve SEL command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
if (count < 0) {
/** Show only the most recent 'count' records. */
int i;
uint16_t entries;
req.msg.cmd = IPMI_CMD_GET_SEL_INFO;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get SEL Info command failed");
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get SEL Info command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
entries = buf2short(rsp->data + 1);
if (-count > entries)
count = -entries;
for(i = 0; i < entries + count; i++) {
next_id = ipmi_sel_get_std_entry(intf, next_id, &evt);
if (next_id == 0) {
/*
* usually next_id of zero means end but
* retry because some hardware has quirks
* and will return 0 randomly.
*/
next_id = ipmi_sel_get_std_entry(intf, next_id, &evt);
if (next_id == 0) {
break;
}
}
}
}
if (savefile != NULL) {
fp = ipmi_open_file_write(savefile);
}
while (next_id != 0xffff) {
curr_id = next_id;
lprintf(LOG_DEBUG, "SEL Next ID: %04x", curr_id);
next_id = ipmi_sel_get_std_entry(intf, curr_id, &evt);
if (next_id == 0) {
/*
* usually next_id of zero means end but
* retry because some hardware has quirks
* and will return 0 randomly.
*/
next_id = ipmi_sel_get_std_entry(intf, curr_id, &evt);
if (next_id == 0)
break;
}
if (verbose)
ipmi_sel_print_std_entry_verbose(intf, &evt);
else
ipmi_sel_print_std_entry(intf, &evt);
if (fp != NULL) {
if (binary)
fwrite(&evt, 1, 16, fp);
else
ipmi_sel_print_event_file(intf, &evt, fp);
}
if (++n == count) {
break;
}
}
if (fp != NULL)
fclose(fp);
return 0;
}
static int
ipmi_sel_list_entries(struct ipmi_intf * intf, int count)
{
return __ipmi_sel_savelist_entries(intf, count, NULL, 0);
}
static int
ipmi_sel_save_entries(struct ipmi_intf * intf, int count, const char * savefile)
{
return __ipmi_sel_savelist_entries(intf, count, savefile, 0);
}
/*
* ipmi_sel_interpret
*
* return 0 on success,
* -1 on error
*/
static int
ipmi_sel_interpret(struct ipmi_intf *intf, unsigned long iana,
const char *readfile, const char *format)
{
FILE *fp = 0;
struct sel_event_record evt;
char *buffer = NULL;
char *cursor = NULL;
int status = 0;
/* since the interface is not used, iana is taken from
* the command line
*/
sel_iana = iana;
if (strncmp("pps", format, 3) == 0) {
/* Parser for the following format */
/* 0x001F: Event: at Mar 27 06:41:10 2007;from:(0x9a,0,7);
* sensor:(0xc3,119); event:0x6f(asserted): 0xA3 0x00 0x88
* commonly found in PPS shelf managers
* Supports a tweak for hotswap events that are already interpreted.
*/
fp = ipmi_open_file(readfile, 0);
if (fp == NULL) {
lprintf(LOG_ERR, "Failed to open file '%s' for reading.",
readfile);
return (-1);
}
buffer = (char *)malloc((size_t)256);
if (buffer == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
fclose(fp);
return (-1);
}
do {
/* Only allow complete lines to be parsed,
* hardcoded maximum line length
*/
if (fgets(buffer, 256, fp) == NULL) {
status = (-1);
break;
}
if (strlen(buffer) > 255) {
lprintf(LOG_ERR, "ipmitool: invalid entry found in file.");
continue;
}
cursor = buffer;
/* assume normal "System" event */
evt.record_type = 2;
errno = 0;
evt.record_id = strtol((const char *)cursor, (char **)NULL, 16);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid record ID.");
status = (-1);
break;
}
evt.sel_type.standard_type.evm_rev = 4;
/* FIXME: convert*/
evt.sel_type.standard_type.timestamp;
/* skip timestamp */
cursor = index((const char *)cursor, ';');
cursor++;
/* FIXME: parse originator */
evt.sel_type.standard_type.gen_id = 0x0020;
/* skip originator info */
cursor = index((const char *)cursor, ';');
cursor++;
/* Get sensor type */
cursor = index((const char *)cursor, '(');
cursor++;
errno = 0;
evt.sel_type.standard_type.sensor_type =
strtol((const char *)cursor, (char **)NULL, 16);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Sensor Type.");
status = (-1);
break;
}
cursor = index((const char *)cursor, ',');
cursor++;
errno = 0;
evt.sel_type.standard_type.sensor_num =
strtol((const char *)cursor, (char **)NULL, 10);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Sensor Number.");
status = (-1);
break;
}
/* skip to event type info */
cursor = index((const char *)cursor, ':');
cursor++;
errno = 0;
evt.sel_type.standard_type.event_type=
strtol((const char *)cursor, (char **)NULL, 16);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Event Type.");
status = (-1);
break;
}
/* skip to event dir info */
cursor = index((const char *)cursor, '(');
cursor++;
if (*cursor == 'a') {
evt.sel_type.standard_type.event_dir = 0;
} else {
evt.sel_type.standard_type.event_dir = 1;
}
/* skip to data info */
cursor = index((const char *)cursor, ' ');
cursor++;
if (evt.sel_type.standard_type.sensor_type == 0xF0) {
/* got to FRU id */
while (!isdigit(*cursor)) {
cursor++;
}
/* store FRUid */
errno = 0;
evt.sel_type.standard_type.event_data[2] =
strtol(cursor, (char **)NULL, 10);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Event Data#2.");
status = (-1);
break;
}
/* Get to previous state */
cursor = index((const char *)cursor, 'M');
cursor++;
/* Set previous state */
errno = 0;
evt.sel_type.standard_type.event_data[1] =
strtol(cursor, (char **)NULL, 10);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Event Data#1.");
status = (-1);
break;
}
/* Get to current state */
cursor = index((const char *)cursor, 'M');
cursor++;
/* Set current state */
errno = 0;
evt.sel_type.standard_type.event_data[0] =
0xA0 | strtol(cursor, (char **)NULL, 10);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Event Data#0.");
status = (-1);
break;
}
/* skip to cause */
cursor = index((const char *)cursor, '=');
cursor++;
errno = 0;
evt.sel_type.standard_type.event_data[1] |=
(strtol(cursor, (char **)NULL, 16)) << 4;
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Event Data#1.");
status = (-1);
break;
}
} else if (*cursor == '0') {
errno = 0;
evt.sel_type.standard_type.event_data[0] =
strtol((const char *)cursor, (char **)NULL, 16);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Event Data#0.");
status = (-1);
break;
}
cursor = index((const char *)cursor, ' ');
cursor++;
errno = 0;
evt.sel_type.standard_type.event_data[1] =
strtol((const char *)cursor, (char **)NULL, 16);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Event Data#1.");
status = (-1);
break;
}
cursor = index((const char *)cursor, ' ');
cursor++;
errno = 0;
evt.sel_type.standard_type.event_data[2] =
strtol((const char *)cursor, (char **)NULL, 16);
if (errno != 0) {
lprintf(LOG_ERR, "Invalid Event Data#2.");
status = (-1);
break;
}
} else {
lprintf(LOG_ERR, "ipmitool: can't guess format.");
}
/* parse the PPS line into a sel_event_record */
if (verbose) {
ipmi_sel_print_std_entry_verbose(intf, &evt);
} else {
ipmi_sel_print_std_entry(intf, &evt);
}
cursor = NULL;
} while (status == 0); /* until file is completely read */
cursor = NULL;
free(buffer);
buffer = NULL;
fclose(fp);
} else {
lprintf(LOG_ERR, "Given format '%s' is unknown.", format);
status = (-1);
}
return status;
}
static int
ipmi_sel_writeraw(struct ipmi_intf * intf, const char * savefile)
{
return __ipmi_sel_savelist_entries(intf, 0, savefile, 1);
}
static int
ipmi_sel_readraw(struct ipmi_intf * intf, const char * inputfile)
{
struct sel_event_record evt;
int ret = 0;
FILE* fp = 0;
fp = ipmi_open_file(inputfile, 0);
if (fp)
{
size_t bytesRead;
do {
if ((bytesRead = fread(&evt, 1, 16, fp)) == 16)
{
if (verbose)
ipmi_sel_print_std_entry_verbose(intf, &evt);
else
ipmi_sel_print_std_entry(intf, &evt);
}
else
{
if (bytesRead != 0)
{
lprintf(LOG_ERR, "ipmitool: incomplete record found in file.");
ret = -1;
}
break;
}
} while (1);
fclose(fp);
}
else
{
lprintf(LOG_ERR, "ipmitool: could not open input file.");
ret = -1;
}
return ret;
}
static uint16_t
ipmi_sel_reserve(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_RESERVE_SEL;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_WARN, "Unable to reserve SEL");
return 0;
}
if (rsp->ccode > 0) {
printf("Unable to reserve SEL: %s",
val2str(rsp->ccode, completion_code_vals));
return 0;
}
return (rsp->data[0] | (rsp->data[1] << 8));
}
/*
* ipmi_sel_get_time
*
* return 0 on success,
* -1 on error
*/
static int
ipmi_sel_get_time(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
static char tbuf[40];
uint32_t timei;
time_t time;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_GET_SEL_TIME;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get SEL Time command failed");
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get SEL Time command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
if (rsp->data_len != 4) {
lprintf(LOG_ERR, "Get SEL Time command failed: "
"Invalid data length %d", rsp->data_len);
return -1;
}
memcpy(&timei, rsp->data, 4);
#if WORDS_BIGENDIAN
time = (time_t)(BSWAP_32(timei));
#else
time = (time_t)timei;
#endif
strftime(tbuf, sizeof(tbuf), "%m/%d/%Y %H:%M:%S", gmtime(&time));
printf("%s\n", tbuf);
return 0;
}
/*
* ipmi_sel_set_time
*
* return 0 on success,
* -1 on error
*/
static int
ipmi_sel_set_time(struct ipmi_intf * intf, const char * time_string)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct tm tm = {0};
time_t t;
uint32_t timei;
const char * time_format = "%m/%d/%Y %H:%M:%S";
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_SET_SEL_TIME;
/* See if user requested set to current client system time */
if (strncasecmp(time_string, "now", 3) == 0) {
t = time(NULL);
}
else {
/* Now how do we get our time_t from our ascii version? */
if (strptime(time_string, time_format, &tm) == 0) {
lprintf(LOG_ERR, "Specified time could not be parsed");
return -1;
}
tm.tm_isdst = (-1); /* look up DST information */
t = mktime(&tm);
if (t < 0) {
lprintf(LOG_ERR, "Specified time could not be parsed");
return -1;
}
}
{
//modify UTC time to local time expressed in number of seconds from 1/1/70 0:0:0 1970 GMT
struct tm * tm_tmp = {0};
int gt_year,gt_yday,gt_hour,gt_min,lt_year,lt_yday,lt_hour,lt_min;
int delta_hour;
tm_tmp=gmtime(&t);
gt_year=tm_tmp->tm_year;
gt_yday=tm_tmp->tm_yday;
gt_hour=tm_tmp->tm_hour;
gt_min=tm_tmp->tm_min;
memset(&*tm_tmp, 0, sizeof(struct tm));
tm_tmp=localtime(&t);
lt_year=tm_tmp->tm_year;
lt_yday=tm_tmp->tm_yday;
lt_hour=tm_tmp->tm_hour;
lt_min=tm_tmp->tm_min;
delta_hour=lt_hour - gt_hour;
if ( (lt_year > gt_year) || ((lt_year == gt_year) && (lt_yday > gt_yday)) )
delta_hour += 24;
if ( (lt_year < gt_year) || ((lt_year == gt_year) && (lt_yday < gt_yday)) )
delta_hour -= 24;
t += (delta_hour * 60 * 60) + (lt_min - gt_min) * 60;
}
timei = (uint32_t)t;
req.msg.data = (uint8_t *)&timei;
req.msg.data_len = 4;
#if WORDS_BIGENDIAN
timei = BSWAP_32(timei);
#endif
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Set SEL Time command failed");
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Set SEL Time command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
ipmi_sel_get_time(intf);
return 0;
}
static int
ipmi_sel_clear(struct ipmi_intf * intf)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
uint16_t reserve_id;
uint8_t msg_data[6];
reserve_id = ipmi_sel_reserve(intf);
if (reserve_id == 0)
return -1;
memset(msg_data, 0, 6);
msg_data[0] = reserve_id & 0xff;
msg_data[1] = reserve_id >> 8;
msg_data[2] = 'C';
msg_data[3] = 'L';
msg_data[4] = 'R';
msg_data[5] = 0xaa;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_CLEAR_SEL;
req.msg.data = msg_data;
req.msg.data_len = 6;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Unable to clear SEL");
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Unable to clear SEL: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
printf("Clearing SEL. Please allow a few seconds to erase.\n");
return 0;
}
static int
ipmi_sel_delete(struct ipmi_intf * intf, int argc, char ** argv)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
uint16_t id;
uint8_t msg_data[4];
int rc = 0;
if (argc == 0 || strncmp(argv[0], "help", 4) == 0) {
lprintf(LOG_ERR, "usage: delete <id>...<id>\n");
return -1;
}
id = ipmi_sel_reserve(intf);
if (id == 0)
return -1;
memset(msg_data, 0, 4);
msg_data[0] = id & 0xff;
msg_data[1] = id >> 8;
for (; argc != 0; argc--)
{
if (str2ushort(argv[argc-1], &id) != 0) {
lprintf(LOG_ERR, "Given SEL ID '%s' is invalid.",
argv[argc-1]);
rc = (-1);
continue;
}
msg_data[2] = id & 0xff;
msg_data[3] = id >> 8;
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = IPMI_CMD_DELETE_SEL_ENTRY;
req.msg.data = msg_data;
req.msg.data_len = 4;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Unable to delete entry %d", id);
rc = -1;
}
else if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Unable to delete entry %d: %s", id,
val2str(rsp->ccode, completion_code_vals));
rc = -1;
}
else {
printf("Deleted entry %d\n", id);
}
}
return rc;
}
static int
ipmi_sel_show_entry(struct ipmi_intf * intf, int argc, char ** argv)
{
struct entity_id entity;
struct sdr_record_list *entry;
struct sdr_record_list *list;
struct sdr_record_list *sdr;
struct sel_event_record evt;
int i;
int oldv;
int rc = 0;
uint16_t id;
if (argc == 0 || strncmp(argv[0], "help", 4) == 0) {
lprintf(LOG_ERR, "usage: sel get <id>...<id>");
return (-1);
}
if (ipmi_sel_reserve(intf) == 0) {
lprintf(LOG_ERR, "Unable to reserve SEL");
return (-1);
}
for (i = 0; i < argc; i++) {
if (str2ushort(argv[i], &id) != 0) {
lprintf(LOG_ERR, "Given SEL ID '%s' is invalid.",
argv[i]);
rc = (-1);
continue;
}
lprintf(LOG_DEBUG, "Looking up SEL entry 0x%x", id);
/* lookup SEL entry based on ID */
if (!ipmi_sel_get_std_entry(intf, id, &evt)) {
lprintf(LOG_DEBUG, "SEL Entry 0x%x not found.", id);
rc = (-1);
continue;
}
if (evt.sel_type.standard_type.sensor_num == 0
&& evt.sel_type.standard_type.sensor_type == 0
&& evt.record_type == 0) {
lprintf(LOG_WARN, "SEL Entry 0x%x not found", id);
rc = (-1);
continue;
}
/* lookup SDR entry based on sensor number and type */
ipmi_sel_print_extended_entry_verbose(intf, &evt);
sdr = ipmi_sdr_find_sdr_bynumtype(intf,
evt.sel_type.standard_type.gen_id,
evt.sel_type.standard_type.sensor_num,
evt.sel_type.standard_type.sensor_type);
if (sdr == NULL) {
continue;
}
/* print SDR entry */
oldv = verbose;
verbose = verbose ? verbose : 1;
switch (sdr->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
ipmi_sensor_print_fc(intf, sdr->record.common,
sdr->type);
entity.id = sdr->record.common->entity.id;
entity.instance = sdr->record.common->entity.instance;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
ipmi_sdr_print_sensor_eventonly(intf, sdr->record.eventonly);
entity.id = sdr->record.eventonly->entity.id;
entity.instance = sdr->record.eventonly->entity.instance;
break;
default:
verbose = oldv;
continue;
}
verbose = oldv;
/* lookup SDR entry based on entity id */
list = ipmi_sdr_find_sdr_byentity(intf, &entity);
for (entry=list; entry; entry=entry->next) {
/* print FRU devices we find for this entity */
if (entry->type == SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR)
ipmi_fru_print(intf, entry->record.fruloc);
}
if ((argc > 1) && (i < (argc - 1))) {
printf("----------------------\n\n");
}
}
return rc;
}
int ipmi_sel_main(struct ipmi_intf * intf, int argc, char ** argv)
{
int rc = 0;
if (argc == 0)
rc = ipmi_sel_get_info(intf);
else if (strncmp(argv[0], "help", 4) == 0)
lprintf(LOG_ERR, "SEL Commands: "
"info clear delete list elist get add time save readraw writeraw interpret");
else if (strncmp(argv[0], "interpret", 9) == 0) {
uint32_t iana = 0;
if (argc < 4) {
lprintf(LOG_NOTICE, "usage: sel interpret iana filename format(pps)");
return 0;
}
if (str2uint(argv[1], &iana) != 0) {
lprintf(LOG_ERR, "Given IANA '%s' is invalid.",
argv[1]);
return (-1);
}
rc = ipmi_sel_interpret(intf, iana, argv[2], argv[3]);
}
else if (strncmp(argv[0], "info", 4) == 0)
rc = ipmi_sel_get_info(intf);
else if (strncmp(argv[0], "save", 4) == 0) {
if (argc < 2) {
lprintf(LOG_NOTICE, "usage: sel save <filename>");
return 0;
}
rc = ipmi_sel_save_entries(intf, 0, argv[1]);
}
else if (strncmp(argv[0], "add", 3) == 0) {
if (argc < 2) {
lprintf(LOG_NOTICE, "usage: sel add <filename>");
return 0;
}
rc = ipmi_sel_add_entries_fromfile(intf, argv[1]);
}
else if (strncmp(argv[0], "writeraw", 8) == 0) {
if (argc < 2) {
lprintf(LOG_NOTICE, "usage: sel writeraw <filename>");
return 0;
}
rc = ipmi_sel_writeraw(intf, argv[1]);
}
else if (strncmp(argv[0], "readraw", 7) == 0) {
if (argc < 2) {
lprintf(LOG_NOTICE, "usage: sel readraw <filename>");
return 0;
}
rc = ipmi_sel_readraw(intf, argv[1]);
}
else if (strncmp(argv[0], "ereadraw", 8) == 0) {
if (argc < 2) {
lprintf(LOG_NOTICE, "usage: sel ereadraw <filename>");
return 0;
}
sel_extended = 1;
rc = ipmi_sel_readraw(intf, argv[1]);
}
else if (strncmp(argv[0], "list", 4) == 0 ||
strncmp(argv[0], "elist", 5) == 0) {
/*
* Usage:
* list - show all SEL entries
* list first <n> - show the first (oldest) <n> SEL entries
* list last <n> - show the last (newsest) <n> SEL entries
*/
int count = 0;
int sign = 1;
char *countstr = NULL;
if (strncmp(argv[0], "elist", 5) == 0)
sel_extended = 1;
else
sel_extended = 0;
if (argc == 2) {
countstr = argv[1];
}
else if (argc == 3) {
countstr = argv[2];
if (strncmp(argv[1], "last", 4) == 0) {
sign = -1;
}
else if (strncmp(argv[1], "first", 5) != 0) {
lprintf(LOG_ERR, "Unknown sel list option");
return -1;
}
}
if (countstr) {
if (str2int(countstr, &count) != 0) {
lprintf(LOG_ERR, "Numeric argument required; got '%s'",
countstr);
return -1;
}
}
count *= sign;
rc = ipmi_sel_list_entries(intf,count);
}
else if (strncmp(argv[0], "clear", 5) == 0)
rc = ipmi_sel_clear(intf);
else if (strncmp(argv[0], "delete", 6) == 0) {
if (argc < 2)
lprintf(LOG_ERR, "usage: sel delete <id>...<id>");
else
rc = ipmi_sel_delete(intf, argc-1, &argv[1]);
}
else if (strncmp(argv[0], "get", 3) == 0) {
if (argc < 2)
lprintf(LOG_ERR, "usage: sel get <entry>");
else
rc = ipmi_sel_show_entry(intf, argc-1, &argv[1]);
}
else if (strncmp(argv[0], "time", 4) == 0) {
if (argc < 2)
lprintf(LOG_ERR, "sel time commands: get set");
else if (strncmp(argv[1], "get", 3) == 0)
ipmi_sel_get_time(intf);
else if (strncmp(argv[1], "set", 3) == 0) {
if (argc < 3)
lprintf(LOG_ERR, "usage: sel time set \"mm/dd/yyyy hh:mm:ss\"");
else
rc = ipmi_sel_set_time(intf, argv[2]);
} else {
lprintf(LOG_ERR, "sel time commands: get set");
}
}
else {
lprintf(LOG_ERR, "Invalid SEL command: %s", argv[0]);
rc = -1;
}
return rc;
}