ipmitool/ipmitool/lib/ipmi_event.c
Jim Mankovich 5d960089c9 Support for analog readings in discrete sensors on HP platforms. This was
implemented without an HP oem specific switch by modifying each interface
open routine to read and cache the OEM manufacturer (via the Get Device ID
command) immediately upon open and to reset the cached OEM manufacturer
id to unknown upon interface close.  The cached manufacturer value in the
interface is then be used at run time to implement the manufacturer
specific code.

A non threshold sensor has an analog value if it is defined as having
analog units and it has either valid percentage or modifier units
defined and the manufacturer is IPMI_OEM_HP.   The determination of
whether or not a given sensor has an analog value is contained in a
single function (sdr_sensor_has_analog_reading).

This patch also encapsulates the reading of all sensor values in
ipmitool into a a single ipmitool function, ipmi_sdr_read_sensor_value.
The prior independent sensor reading code paths have been collapsed into
one sensor reading code path.   This encapsulation enabled consistent
validation of all data returned by the IPMI get sensor reading command.
In implementing a single sensor value read function, I resolved the
inconsistencies between what the "sensor" and "sdr" arguments displayed
and  I also resolved numerous cases where uninitialized information in
the IPMI reply from get sensor reading was being interpreted and
incorrectly displayed.
2012-07-10 16:01:09 +00:00

637 lines
17 KiB
C

/*
* Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind.
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
* SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
* SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA,
* OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
* PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
* LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,
* EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#include <unistd.h>
#include <signal.h>
#include <ctype.h>
#include <ipmitool/ipmi.h>
#include <ipmitool/ipmi_intf.h>
#include <ipmitool/helper.h>
#include <ipmitool/log.h>
#include <ipmitool/ipmi_sel.h>
#include <ipmitool/ipmi_strings.h>
#include <ipmitool/ipmi_channel.h>
#include <ipmitool/ipmi_event.h>
#include <ipmitool/ipmi_sdr.h>
static void
ipmi_event_msg_print(struct ipmi_intf * intf, struct platform_event_msg * pmsg)
{
struct sel_event_record sel_event;
memset(&sel_event, 0, sizeof(struct sel_event_record));
sel_event.record_id = 0;
sel_event.sel_type.standard_type.gen_id = 2;
sel_event.sel_type.standard_type.evm_rev = pmsg->evm_rev;
sel_event.sel_type.standard_type.sensor_type = pmsg->sensor_type;
sel_event.sel_type.standard_type.sensor_num = pmsg->sensor_num;
sel_event.sel_type.standard_type.event_type = pmsg->event_type;
sel_event.sel_type.standard_type.event_dir = pmsg->event_dir;
sel_event.sel_type.standard_type.event_data[0] = pmsg->event_data[0];
sel_event.sel_type.standard_type.event_data[1] = pmsg->event_data[1];
sel_event.sel_type.standard_type.event_data[2] = pmsg->event_data[2];
if (verbose)
ipmi_sel_print_extended_entry_verbose(intf, &sel_event);
else
ipmi_sel_print_extended_entry(intf, &sel_event);
}
static int
ipmi_send_platform_event(struct ipmi_intf * intf, struct platform_event_msg * emsg)
{
struct ipmi_rs * rsp;
struct ipmi_rq req;
uint8_t rqdata[8];
uint8_t chmed;
memset(&req, 0, sizeof(req));
memset(rqdata, 0, 8);
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = 0x02;
req.msg.data = rqdata;
chmed = ipmi_current_channel_medium(intf);
if (chmed == IPMI_CHANNEL_MEDIUM_SYSTEM) {
/* system interface, need extra generator ID */
req.msg.data_len = 8;
rqdata[0] = 0x41; // As per Fig. 29-2 and Table 5-4
memcpy(rqdata+1, emsg, sizeof(struct platform_event_msg));
}
else {
req.msg.data_len = 7;
memcpy(rqdata, emsg, sizeof(struct platform_event_msg));
}
ipmi_event_msg_print(intf, emsg);
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Platform Event Message command failed");
return -1;
}
else if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Platform Event Message command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
return 0;
}
#define EVENT_THRESH_STATE_LNC_LO 0
#define EVENT_THRESH_STATE_LNC_HI 1
#define EVENT_THRESH_STATE_LCR_LO 2
#define EVENT_THRESH_STATE_LCR_HI 3
#define EVENT_THRESH_STATE_LNR_LO 4
#define EVENT_THRESH_STATE_LNR_HI 5
#define EVENT_THRESH_STATE_UNC_LO 6
#define EVENT_THRESH_STATE_UNC_HI 7
#define EVENT_THRESH_STATE_UCR_LO 8
#define EVENT_THRESH_STATE_UCR_HI 9
#define EVENT_THRESH_STATE_UNR_LO 10
#define EVENT_THRESH_STATE_UNR_HI 11
static const struct valstr ipmi_event_thresh_lo[] = {
{ EVENT_THRESH_STATE_LNC_LO, "lnc" },
{ EVENT_THRESH_STATE_LCR_LO, "lcr" },
{ EVENT_THRESH_STATE_LNR_LO, "lnr" },
{ EVENT_THRESH_STATE_UNC_LO, "unc" },
{ EVENT_THRESH_STATE_UCR_LO, "ucr" },
{ EVENT_THRESH_STATE_UNR_LO, "unr" },
{ 0, NULL },
};
static const struct valstr ipmi_event_thresh_hi[] = {
{ EVENT_THRESH_STATE_LNC_HI, "lnc" },
{ EVENT_THRESH_STATE_LCR_HI, "lcr" },
{ EVENT_THRESH_STATE_LNR_HI, "lnr" },
{ EVENT_THRESH_STATE_UNC_HI, "unc" },
{ EVENT_THRESH_STATE_UCR_HI, "ucr" },
{ EVENT_THRESH_STATE_UNR_HI, "unr" },
{ 0, NULL },
};
static int
ipmi_send_platform_event_num(struct ipmi_intf * intf, int num)
{
struct platform_event_msg emsg;
memset(&emsg, 0, sizeof(struct platform_event_msg));
/* IPMB/LAN/etc */
switch (num) {
case 1: /* temperature */
printf("Sending SAMPLE event: Temperature - "
"Upper Critical - Going High\n");
emsg.evm_rev = 0x04;
emsg.sensor_type = 0x01;
emsg.sensor_num = 0x30;
emsg.event_dir = EVENT_DIR_ASSERT;
emsg.event_type = 0x01;
emsg.event_data[0] = EVENT_THRESH_STATE_UCR_HI;
emsg.event_data[1] = 0xff;
emsg.event_data[2] = 0xff;
break;
case 2: /* voltage error */
printf("Sending SAMPLE event: Voltage Threshold - "
"Lower Critical - Going Low\n");
emsg.evm_rev = 0x04;
emsg.sensor_type = 0x02;
emsg.sensor_num = 0x60;
emsg.event_dir = EVENT_DIR_ASSERT;
emsg.event_type = 0x01;
emsg.event_data[0] = EVENT_THRESH_STATE_LCR_LO;
emsg.event_data[1] = 0xff;
emsg.event_data[2] = 0xff;
break;
case 3: /* correctable ECC */
printf("Sending SAMPLE event: Memory - Correctable ECC\n");
emsg.evm_rev = 0x04;
emsg.sensor_type = 0x0c;
emsg.sensor_num = 0x53;
emsg.event_dir = EVENT_DIR_ASSERT;
emsg.event_type = 0x6f;
emsg.event_data[0] = 0x00;
emsg.event_data[1] = 0xff;
emsg.event_data[2] = 0xff;
break;
default:
lprintf(LOG_ERR, "Invalid event number: %d", num);
return -1;
}
return ipmi_send_platform_event(intf, &emsg);
}
static int
ipmi_event_find_offset(uint8_t code,
struct ipmi_event_sensor_types * evt,
char * desc)
{
if (desc == NULL || code == 0)
return 0x00;
while (evt->type) {
if (evt->code == code && evt->desc != NULL &&
strncasecmp(desc, evt->desc, __maxlen(desc, evt->desc)) == 0)
return evt->offset;
evt++;
}
lprintf(LOG_WARN, "Unable to find matching event offset for '%s'", desc);
return -1;
}
static void
print_sensor_states(uint8_t sensor_type, uint8_t event_type)
{
ipmi_sdr_print_discrete_state_mini(
"Sensor States: \n ", "\n ", sensor_type,
event_type, 0xff, 0xff);
printf("\n");
}
static int
ipmi_event_fromsensor(struct ipmi_intf * intf, char * id, char * state, char * evdir)
{
struct ipmi_rs * rsp;
struct sdr_record_list * sdr;
struct platform_event_msg emsg;
int off;
uint8_t target, lun, channel;
if (id == NULL) {
lprintf(LOG_ERR, "No sensor ID supplied");
return -1;
}
memset(&emsg, 0, sizeof(struct platform_event_msg));
emsg.evm_rev = 0x04;
if (evdir == NULL)
emsg.event_dir = EVENT_DIR_ASSERT;
else if (strncasecmp(evdir, "assert", 6) == 0)
emsg.event_dir = EVENT_DIR_ASSERT;
else if (strncasecmp(evdir, "deassert", 8) == 0)
emsg.event_dir = EVENT_DIR_DEASSERT;
else {
lprintf(LOG_ERR, "Invalid event direction %s. Must be 'assert' or 'deassert'", evdir);
return -1;
}
printf("Finding sensor %s... ", id);
sdr = ipmi_sdr_find_sdr_byid(intf, id);
if (sdr == NULL) {
printf("not found!\n");
return -1;
}
printf("ok\n");
switch (sdr->type)
{
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
emsg.sensor_type = sdr->record.common->sensor.type;
emsg.sensor_num = sdr->record.common->keys.sensor_num;
emsg.event_type = sdr->record.common->event_type;
target = sdr->record.common->keys.owner_id;
lun = sdr->record.common->keys.lun;
channel = sdr->record.common->keys.channel;
break;
default:
lprintf(LOG_ERR, "Unknown sensor type for id '%s'", id);
return -1;
}
emsg.event_data[1] = 0xff;
emsg.event_data[2] = 0xff;
switch (emsg.event_type)
{
/*
* Threshold Class
*/
case 1:
{
int dir = 0;
int hilo = 0;
off = 1;
if (state == NULL || strncasecmp(state, "list", 4) == 0) {
printf("Sensor States:\n");
printf(" lnr : Lower Non-Recoverable \n");
printf(" lcr : Lower Critical\n");
printf(" lnc : Lower Non-Critical\n");
printf(" unc : Upper Non-Critical\n");
printf(" ucr : Upper Critical\n");
printf(" unr : Upper Non-Recoverable\n");
return -1;
}
if (0 != strncasecmp(state, "lnr", 3) &&
0 != strncasecmp(state, "lcr", 3) &&
0 != strncasecmp(state, "lnc", 3) &&
0 != strncasecmp(state, "unc", 3) &&
0 != strncasecmp(state, "ucr", 3) &&
0 != strncasecmp(state, "unr", 3))
{
lprintf(LOG_ERR, "Invalid threshold identifier %s", state);
return -1;
}
if (state[0] == 'u')
hilo = 1;
else
hilo = 0;
if (emsg.event_dir == EVENT_DIR_ASSERT)
dir = hilo;
else
dir = !hilo;
if ((emsg.event_dir == EVENT_DIR_ASSERT && hilo == 1) ||
(emsg.event_dir == EVENT_DIR_DEASSERT && hilo == 0))
emsg.event_data[0] = (uint8_t)(str2val(state, ipmi_event_thresh_hi) & 0xf);
else if ((emsg.event_dir == EVENT_DIR_ASSERT && hilo == 0) ||
(emsg.event_dir == EVENT_DIR_DEASSERT && hilo == 1))
emsg.event_data[0] = (uint8_t)(str2val(state, ipmi_event_thresh_lo) & 0xf);
else {
lprintf(LOG_ERR, "Invalid Event\n");
return -1;
}
rsp = ipmi_sdr_get_sensor_thresholds(intf, emsg.sensor_num,
target, lun, channel);
if (rsp != NULL && rsp->ccode == 0) {
/* threshold reading */
emsg.event_data[2] = rsp->data[(emsg.event_data[0] / 2) + 1];
rsp = ipmi_sdr_get_sensor_hysteresis(intf, emsg.sensor_num,
target, lun, channel);
if (rsp != NULL && rsp->ccode == 0)
off = dir ? rsp->data[0] : rsp->data[1];
if (off <= 0)
off = 1;
/* trigger reading */
if (dir) {
if ((emsg.event_data[2] + off) > 0xff)
emsg.event_data[1] = 0xff;
else
emsg.event_data[1] = emsg.event_data[2] + off;
}
else {
if ((emsg.event_data[2] - off) < 0)
emsg.event_data[1] = 0;
else
emsg.event_data[1] = emsg.event_data[2] - off;
}
/* trigger in byte 2, threshold in byte 3 */
emsg.event_data[0] |= 0x50;
}
}
break;
/*
* Digital Discrete
*/
case 3: case 4: case 5: case 6: case 8: case 9:
{
int x;
const char * digi_on[] = { "present", "assert", "limit",
"fail", "yes", "on", "up" };
const char * digi_off[] = { "absent", "deassert", "nolimit",
"nofail", "no", "off", "down" };
/*
* print list of available states for this sensor
*/
if (state == NULL || strncasecmp(state, "list", 4) == 0) {
print_sensor_states(emsg.sensor_type, emsg.event_type);
printf("Sensor State Shortcuts:\n");
for (x = 0; x < sizeof(digi_on)/sizeof(*digi_on); x++) {
printf(" %-9s %-9s\n", digi_on[x], digi_off[x]);
}
return 0;
}
off = 0;
for (x = 0; x < sizeof(digi_on)/sizeof(*digi_on); x++) {
if (strncasecmp(state, digi_on[x], strlen(digi_on[x])) == 0) {
emsg.event_data[0] = 1;
off = 1;
break;
}
else if (strncasecmp(state, digi_off[x], strlen(digi_off[x])) == 0) {
emsg.event_data[0] = 0;
off = 1;
break;
}
}
if (off == 0) {
off = ipmi_event_find_offset(
emsg.event_type, generic_event_types, state);
if (off < 0)
return -1;
emsg.event_data[0] = off;
}
}
break;
/*
* Generic Discrete
*/
case 2: case 7: case 10: case 11: case 12:
{
/*
* print list of available states for this sensor
*/
if (state == NULL || strncasecmp(state, "list", 4) == 0) {
print_sensor_states(emsg.sensor_type, emsg.event_type);
return 0;
}
off = ipmi_event_find_offset(
emsg.event_type, generic_event_types, state);
if (off < 0)
return -1;
emsg.event_data[0] = off;
}
break;
/*
* Sensor-Specific Discrete
*/
case 0x6f:
{
/*
* print list of available states for this sensor
*/
if (state == NULL || strncasecmp(state, "list", 4) == 0) {
print_sensor_states(emsg.sensor_type, emsg.event_type);
return 0;
}
off = ipmi_event_find_offset(
emsg.sensor_type, sensor_specific_types, state);
if (off < 0)
return -1;
emsg.event_data[0] = off;
}
break;
default:
return -1;
}
return ipmi_send_platform_event(intf, &emsg);
}
static int
ipmi_event_fromfile(struct ipmi_intf * intf, char * file)
{
FILE * fp;
struct ipmi_rs * rsp;
struct ipmi_rq req;
struct sel_event_record sel_event;
uint8_t rqdata[8];
char buf[1024];
char * ptr, * tok;
int i, j;
uint8_t chmed;
int rc = 0;
if (file == NULL)
return -1;
memset(rqdata, 0, 8);
/* setup Platform Event Message command */
memset(&req, 0, sizeof(req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = 0x02;
req.msg.data = rqdata;
req.msg.data_len = 7;
chmed = ipmi_current_channel_medium(intf);
if (chmed == IPMI_CHANNEL_MEDIUM_SYSTEM) {
/* system interface, need extra generator ID */
rqdata[0] = 0x41; // As per Fig. 29-2 and Table 5-4
req.msg.data_len = 8;
}
fp = ipmi_open_file_read(file);
if (fp == NULL)
return -1;
while (feof(fp) == 0) {
if (fgets(buf, 1024, fp) == NULL)
continue;
/* clip off optional comment tail indicated by # */
ptr = strchr(buf, '#');
if (ptr)
*ptr = '\0';
else
ptr = buf + strlen(buf);
/* clip off trailing and leading whitespace */
ptr--;
while (isspace((int)*ptr) && ptr >= buf)
*ptr-- = '\0';
ptr = buf;
while (isspace((int)*ptr))
ptr++;
if (strlen(ptr) == 0)
continue;
/* parse the event, 7 bytes with optional comment */
/* 0x00 0x00 0x00 0x00 0x00 0x00 0x00 # event */
i = 0;
tok = strtok(ptr, " ");
while (tok) {
if (i == 7)
break;
j = i++;
if (chmed == IPMI_CHANNEL_MEDIUM_SYSTEM)
j++;
rqdata[j] = (uint8_t)strtol(tok, NULL, 0);
tok = strtok(NULL, " ");
}
if (i < 7) {
lprintf(LOG_ERR, "Invalid Event: %s",
buf2str(rqdata, sizeof(rqdata)));
continue;
}
memset(&sel_event, 0, sizeof(struct sel_event_record));
sel_event.record_id = 0;
sel_event.sel_type.standard_type.gen_id = 2;
j = (chmed == IPMI_CHANNEL_MEDIUM_SYSTEM) ? 1 : 0;
sel_event.sel_type.standard_type.evm_rev = rqdata[j++];
sel_event.sel_type.standard_type.sensor_type = rqdata[j++];
sel_event.sel_type.standard_type.sensor_num = rqdata[j++];
sel_event.sel_type.standard_type.event_type = rqdata[j] & 0x7f;
sel_event.sel_type.standard_type.event_dir = (rqdata[j++] & 0x80) >> 7;
sel_event.sel_type.standard_type.event_data[0] = rqdata[j++];
sel_event.sel_type.standard_type.event_data[1] = rqdata[j++];
sel_event.sel_type.standard_type.event_data[2] = rqdata[j++];
ipmi_sel_print_std_entry(intf, &sel_event);
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Platform Event Message command failed");
rc = -1;
}
else if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Platform Event Message command failed: %s",
val2str(rsp->ccode, completion_code_vals));
rc = -1;
}
}
fclose(fp);
return rc;
}
static void
ipmi_event_usage(void)
{
lprintf(LOG_NOTICE, "");
lprintf(LOG_NOTICE, "usage: event <num>");
lprintf(LOG_NOTICE, " Send generic test events");
lprintf(LOG_NOTICE, " 1 : Temperature - Upper Critical - Going High");
lprintf(LOG_NOTICE, " 2 : Voltage Threshold - Lower Critical - Going Low");
lprintf(LOG_NOTICE, " 3 : Memory - Correctable ECC");
lprintf(LOG_NOTICE, "");
lprintf(LOG_NOTICE, "usage: event file <filename>");
lprintf(LOG_NOTICE, " Read and generate events from file");
lprintf(LOG_NOTICE, " Use the 'sel save' command to generate from SEL");
lprintf(LOG_NOTICE, "");
lprintf(LOG_NOTICE, "usage: event <sensorid> <state> [event_dir]");
lprintf(LOG_NOTICE, " sensorid : Sensor ID string to use for event data");
lprintf(LOG_NOTICE, " state : Sensor state, use 'list' to see possible states for sensor");
lprintf(LOG_NOTICE, " event_dir : assert, deassert [default=assert]");
lprintf(LOG_NOTICE, "");
}
int
ipmi_event_main(struct ipmi_intf * intf, int argc, char ** argv)
{
int rc = 0;
if (argc == 0 || strncmp(argv[0], "help", 4) == 0) {
ipmi_event_usage();
return 0;
}
if (strncmp(argv[0], "file", 4) == 0) {
if (argc < 2) {
ipmi_event_usage();
return 0;
}
return ipmi_event_fromfile(intf, argv[1]);
}
if (strlen(argv[0]) == 1) {
switch (argv[0][0]) {
case '1': return ipmi_send_platform_event_num(intf, 1);
case '2': return ipmi_send_platform_event_num(intf, 2);
case '3': return ipmi_send_platform_event_num(intf, 3);
}
}
if (argc < 2)
rc = ipmi_event_fromsensor(intf, argv[0], NULL, NULL);
else if (argc < 3)
rc = ipmi_event_fromsensor(intf, argv[0], argv[1], NULL);
else
rc = ipmi_event_fromsensor(intf, argv[0], argv[1], argv[2]);
return rc;
}