samplebrain/cooking/python/transponge-mfcc.py
2022-09-04 11:38:20 +01:00

134 lines
3.7 KiB
Python

# aggregate sound from mfcc or fft similarity of chunks
import numpy as np
import scipy.io.wavfile
from features import mfcc
from features import logfbank
from features import base
import copy
source_dir = "../sound/source/"
render_dir = "../sound/render/"
def fadeinout(s,slength,elength):
s = copy.deepcopy(s)
for i in range(0,slength):
m = float(i)/slength;
s[i]*=m
for i in range(0,elength):
m = float(i)/elength;
s[(len(s)-1)-i]*=m
return s
def normalise(s):
m = 0
p = 999999999999999999
for i in range(0,len(s)):
if m<s[i]: m=s[i]
if p>s[i]: p=s[i]
b = max(m,-p)
if b>0:
s/=float(b/10000.0)
return s
def chop(wav,size,overlap,rand):
ret = []
pos = 0
seg = []
samples = wav[1]
while (pos+size<len(samples)):
ret.append([0,fadeinout(samples[pos:pos+size],500,500)])
pos+=(size-overlap)
return ret
def fftify(chopped):
return map(lambda i: np.fft.fft(i[1]), chopped)
def mfccify(chopped,rate):
ret = []
for sig in chopped:
ret.append(logfbank(sig[1],rate))
return ret
def fftdiff(a,b):
return (abs(a-b)).sum(dtype=np.float128)
def diffify(a,b):
return map(lambda a,b: fftdiff(a,b), a, b)
def search(fft,bank):
closest = 99999999999999999
ret = -1
for i,tfft in enumerate(bank):
dist = fftdiff(fft,tfft)
if dist<closest:
ret = i
closest = dist
print(ret)
return ret
def unit_test():
print(fftdiff(np.array([0,0,0,0]),np.array([1,1,1,1])))
#assert(fftdiff(np.array([0,0,0,0]),np.array([1,1,1,1]))==1)
print(fftdiff(np.array([-100,-1000,0,0]),np.array([-1,-1,-1,-1])))
print(fadeinout(np.array([10,10,10,10,10,10,10]),3))
#unit_test()
class transponge():
def __init__(self,chp_size,chp_overlap,dst_filename):
dst = scipy.io.wavfile.read(dst_filename)
self.src_chp=[]
self.src_fft=[]
self.chp_size = chp_size
self.chp_overlap = chp_overlap
self.dst_chp = chop(dst,self.chp_size,self.chp_overlap,0)
print("number of target blocks: "+str(len(self.dst_chp)))
self.dst_fft = mfccify(self.dst_chp,dst[0])
#self.dst_fft = fftify(self.dst_chp)
self.dst_chp = [] # clear
self.dst_size = len(dst[1])
def add(self,src_filename):
src = scipy.io.wavfile.read(src_filename)
print("adding "+src_filename)
src_chp=chop(src,self.chp_size,self.chp_overlap,0)
self.src_chp+=src_chp
self.src_fft+=mfccify(src_chp,src[0])
print("number of source blocks now: "+str(len(self.dst_fft)))
#self.src_fft+=fftify(src_chp)
def process(self):
out = np.zeros(self.dst_size,dtype=self.src_chp[0][1].dtype)
pos = 0
for i,seg in enumerate(self.dst_fft):
# collect indices of closest sections
ii = search(seg,self.src_fft)
for s in range(0,self.chp_size):
if pos+s<self.dst_size:
sample = self.src_chp[ii][1][s]
out[pos+s]=out[pos+s]+(sample*0.25)
pos+=(self.chp_size-self.chp_overlap)
print((i/float(len(self.dst_fft)))*100.0)
if i%10==0: scipy.io.wavfile.write(render_dir+"pwr-acid-mfccnonorm1500.wav",44100,out)
def run(l):
t = transponge(l,int(l*0.75),source_dir+"pw-right.wav")
t.add(source_dir+"totalsine.wav")
# t.add(source_dir+"water.wav")
# t.add(source_dir+"cumbia.wav")
# t.add(source_dir+"pista07.wav")
# t.add(source_dir+"sailingbybit.wav")
t.add(source_dir+"808.wav")
t.add(source_dir+"joey.wav")
# t.add("full.wav")
print("processing")
t.process()
run(1500)