updates to script to reflect new export view and updated list

This commit is contained in:
Paolo Matarazzo
2023-09-18 08:26:54 -04:00
parent 98d6e9e8fa
commit 626f6be0f3
88 changed files with 341 additions and 341 deletions

View File

@ -10,8 +10,8 @@ ms.topic: include
| Feature name | Description |
|:---|:---|
| **[Smart App Control](/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control)** | Smart App Control prevents users from running malicious applications on Windows devices by blocking untrusted or unsigned applications. Smart App Control goes beyond previous built-in browser protections, by adding another layer of security that is woven directly into the core of the OS at the process level. Using AI, our new Smart App Control only allows processes to run that are predicted to be safe based on existing and new intelligence processed daily. Smart App Control builds on top of the same cloud-based AI used in Windows Defender Application Control (WDAC) to predict the safety of an application, so people can be confident they're using safe and reliable applications on their new Windows 11 devices, or Windows 11 devices that have been reset. |
| **[AppLocker](/windows/security/application-security/application-control/windows-defender-application-control/applocker/applocker-overview)** | |
| **[Windows Defender Application Control (WDAC)](/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control)** | Your organization is only as secure as the applications that run on your devices. With application control, apps must earn trust to run, in contrast to an application trust model where all code is assumed trustworthy. By helping prevent unwanted or malicious code from running, application control is an important part of an effective security strategy. Many organizations cite application control as one of the most effective means for addressing the threat of executable file-based malware.<br><br>Windows 10 and above include Windows Defender Application Control (WDAC) and AppLocker. WDAC is the next generation app control solution for Windows and provides powerful control over what runs in your environment. Customers who were using AppLocker on previous versions of Windows can continue to use the feature as they consider whether to switch to WDAC for the stronger protection. |
| **[AppLocker](/windows/security/application-security/application-control/windows-defender-application-control/applocker/applocker-overview)** | |
| **[User Account Control (UAC)](/windows/security/application-security/application-control/user-account-control/)** | User Account Control (UAC) helps prevent malware from damaging a device. With UAC, apps and tasks always run in the security context of a non-administrator account, unless an administrator authorizes administrator-level access to the system. UAC can block the automatic installation of unauthorized apps and prevents inadvertent changes to system settings. Enabling UAC helps to prevent malware from altering device settings and potentially gaining access to networks and sensitive data. UAC can also block the automatic installation of unauthorized apps and prevent inadvertent changes to system settings. |
| **[Microsoft vulnerable driver blocklist](/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-driver-block-rules)** | The Windows kernel is the most privileged software and is therefore a compelling target for malware authors. Since Windows has strict requirements for code running in the kernel, cybercriminals commonly exploit vulnerabilities in kernel drivers to get access. Microsoft works with the ecosystem partners to constantly identify and respond to potentially vulnerable kernel drivers.<br><br>Prior to Windows 11, version 22H2, the operating system enforced a block policy when HVCI is enabled to prevent vulnerable versions of drivers from running. Starting in Windows 11, version 22H2, the block policy is enabled by default for all new Windows devices, and users can opt-in to enforce the policy from the Windows Security app. |

View File

@ -9,7 +9,7 @@ ms.topic: include
| Feature name | Description |
|:---|:---|
| **[Active Directory domain join, Microsoft Entra ID join, and Microsoft Entra Hybrid ID join with single sign-on (SSO)](/azure/active-directory/devices/concept-directory-join)** | Microsoft Entra ID is a comprehensive cloud-based identity management solution that helps enable secure access to applications, networks, and other resources and guard against threats. |
| **[Active Directory domain join, Microsoft Entra join, and Microsoft Entra Hybrid join with single sign-on (SSO)](/azure/active-directory/devices/concept-directory-join)** | Microsoft Entra ID is a comprehensive cloud-based identity management solution that helps enable secure access to applications, networks, and other resources and guard against threats. |
| **[Security baselines](/windows/security/operating-system-security/device-management/windows-security-configuration-framework/windows-security-baselines)** | Windows 11 supports modern device management so that IT pros can manage company security policies and business applications without compromising user privacy on corporate or employee-owned devices. With MDM solutions, IT can manage Windows 11 using industry-standard protocols. To simplify setup for users, management features are built directly into Windows, eliminating the need for a separate MDM client. <br><br>Windows 11 can be configured with Microsoft's MDM security baseline backed by ADMX policies, which functions like the Microsoft GP-based security baseline. The security baseline enables IT administrators to easily address security concerns and compliance needs for modern cloud-managed devices. |
| **[Remote wipe](/windows/client-management/mdm/remotewipe-csp)** | When a device is lost or stolen, IT administrators may want to remotely wipe data stored on the device. A helpdesk agent may also want to reset devices to fix issues encountered by remote workers. <br><br>With the Remote Wipe configuration service provider (CSP), an MDM solution can remotely initiate any of the following operations on a Windows device: reset the device and remove user accounts and data, reset the device and clean the drive, reset the device but persist user accounts and data. |
| **[Modern device management through (MDM)](/windows/client-management/mdm-overview)** | Windows 11 supports modern device management through mobile device management (MDM) protocols.<br><br>IT pros can manage company security policies and business applications without compromising user privacy on corporate or employee-owned devices. With MDM solutions, IT can manage Windows 11 using industry-standard protocols.<br><br>To simplify setup for users, management features are built directly into Windows, eliminating the need for a separate MDM client. |

View File

@ -13,8 +13,8 @@ ms.topic: include
| **[Windows presence sensing](https://support.microsoft.com/windows/managing-presence-sensing-settings-in-windows-11-82285c93-440c-4e15-9081-c9e38c1290bb)** | Windows presence sensing provides another layer of data security protection for hybrid workers. Windows 11 devices can intelligently adapt to your presence to help you stay secure and productive, whether you're working at home, the office, or a public environment. Windows presence sensing combines presence detection sensors with Windows Hello facial recognition to automatically lock your device when you leave, and then unlock your device and sign you in using Windows Hello facial recognition when you return. Requires OEM supporting hardware. |
| **[Windows Hello for Business Enhanced Security Sign-in (ESS)](/windows-hardware/design/device-experiences/windows-hello-enhanced-sign-in-security)** | Windows Hello biometrics also supports enhanced sign-in security, which uses specialized hardware and software components to raise the security bar even higher for biometric sign in. <br><br>Enhanced sign-in security biometrics uses VBS and the TPM to isolate user authentication processes and data and secure the pathway by which the information is communicated. These specialized components protect against a class of attacks that include biometric sample injection, replay, tampering, and more. <br><br>For example, fingerprint readers must implement Secure Device Connection Protocol, which uses key negotiation and a Microsoft-issued certificate to protect and securely store user authentication data. For facial recognition, components such as the Secure Devices (SDEV) table and process isolation with trustlets help prevent additional class of attacks. |
| **[Windows passwordless experience](/windows/security/identity-protection/passwordless-experience)** | Windows passwordless experience is a security policy that aims to create a more user-friendly experience for Microsoft Entra joined devices by eliminating the need for passwords in certain authentication scenarios. By enabling this policy, users will not be given the option to use a password in these scenarios, which helps organizations transition away from passwords over time. |
| **[Passkey](/windows/security/identity-protection/passkey)** | Passkeys provide a more secure and convenient method of logging into websites and applications that support them, compared to passwords. Unlike passwords, which users must remember and type, passkeys are stored as secrets on a device and can be unlocked using the device's unlock mechanism (such as biometrics or a PIN). Passkeys are designed to be used without the need for additional login challenges, making the authentication process faster and more convenient. |
| **[Security key (FIDO2)](/azure/active-directory/authentication/howto-authentication-passwordless-security-key)** | Fast Identity Online (FIDO) defined CTAP and WebAuthN specifications are becoming the open standard for providing strong authentication that is non-phishable, user-friendly, and privacy-respecting with implementations from major platform providers and relying parties. FIDO standards and certifications are becoming recognized as the leading standard for creating secure authentication solutions across enterprises, governments, and consumer markets. <br><br>Windows 11 can use external FIDO2 security keys for authentication alongside or in addition to Windows Hello which is also a FIDO2 certified passwordless solution. Windows 11 can be used as a FIDO authenticator for many popular identity management services. |
| **[Passkey](/windows/security/identity-protection/passkey)** | Passkeys provide a more secure and convenient method to logging into websites and applications compared to passwords. Unlike passwords, which users must remember and type, passkeys are stored as secrets on a device and can use a device's unlock mechanism (such as biometrics or a PIN). Passkeys can be used without the need for other sign in challenges, making the authentication process faster, secure, and more convenient. |
| **[FIDO2 security key](/azure/active-directory/authentication/howto-authentication-passwordless-security-key)** | Fast Identity Online (FIDO) defined CTAP and WebAuthN specifications are becoming the open standard for providing strong authentication that is non-phishable, user-friendly, and privacy-respecting with implementations from major platform providers and relying parties. FIDO standards and certifications are becoming recognized as the leading standard for creating secure authentication solutions across enterprises, governments, and consumer markets. <br><br>Windows 11 can use external FIDO2 security keys for authentication alongside or in addition to Windows Hello which is also a FIDO2 certified passwordless solution. Windows 11 can be used as a FIDO authenticator for many popular identity management services. |
| **[Smart Cards for Windows Service](/windows/security/identity-protection/smart-cards/smart-card-smart-cards-for-windows-service)** | Organizations also have the option of using smart cards, an authentication method that pre-dates biometric sign in. Smart cards are tamper-resistant, portable storage devices that can enhance Windows security when authenticating clients, signing code, securing e-mail, and signing in with Windows domain accounts. Smart cards can only be used to sign into domain accounts, not local accounts. When a password is used to sign into a domain account, Windows uses the Kerberos version 5 (v5) protocol for authentication. If you use a smart card, the operating system uses Kerberos v5 authentication with X.509 v3 certificates. |
## Advanced credential protection

View File

@ -9,8 +9,8 @@ ms.topic: include
| Feature name | Description |
|:---|:---|
| **[Measured boot](/windows/compatibility/measured-boot)** | Measured Boot measures all important code and configuration settings during the boot of Windows. This includes: the firmware, boot manager, hypervisor, kernel, secure kernel and operating system. Measured Boot stores the measurements in the TPM on the machine, and makes them available in a log that can be tested remotely to verify the boot state of the client.<br><br>The Measured Boot feature provides antimalware software with a trusted (resistant to spoofing and tampering) log of all boot components that started before it. The antimalware software can use the log to determine whether components that ran before it are trustworthy, or if they are infected with malware. The antimalware software on the local machine can send the log to a remote server for evaluation. The remote server may initiate remediation actions, either by interacting with software on the client, or through out-of-band mechanisms, as appropriate. |
| **[Secure Boot and Trusted Boot](/windows/security/operating-system-security/system-security/trusted-boot)** | Secure Boot and Trusted Boot help to prevent malware and corrupted components from loading when a device starts. <br><br>Secure Boot starts with initial boot-up protection, and then Trusted Boot picks up the process. Together, Secure Boot and Trusted Boot help to ensure the system boots up safely and securely. |
| **[Measured boot](/windows/compatibility/measured-boot)** | Measured Boot measures all important code and configuration settings during the boot of Windows. This includes: the firmware, boot manager, hypervisor, kernel, secure kernel and operating system. Measured Boot stores the measurements in the TPM on the machine, and makes them available in a log that can be tested remotely to verify the boot state of the client.<br><br>The Measured Boot feature provides antimalware software with a trusted (resistant to spoofing and tampering) log of all boot components that started before it. The antimalware software can use the log to determine whether components that ran before it are trustworthy, or if they are infected with malware. The antimalware software on the local machine can send the log to a remote server for evaluation. The remote server may initiate remediation actions, either by interacting with software on the client, or through out-of-band mechanisms, as appropriate. |
| **[Device health attestation service](/windows/security/operating-system-security/system-security/protect-high-value-assets-by-controlling-the-health-of-windows-10-based-devices)** | The Windows device health attestation process supports a zero-trust paradigm that shifts the focus from static, network-based perimeters, to users, assets, and resources. The attestation process confirms the device, firmware, and boot process are in a good state and have not been tampered with before they can access corporate resources. The determinations are made with data stored in the TPM, which provides a secure root of trust. The information is sent to an attestation service, such as Azure Attestation, to verify the device is in a trusted state. Then, an MDM tool like Microsoft Intune reviews device health and connects this information with Microsoft Entra ID for conditional access. |
| **[Windows security policy settings and auditing](/windows/security/threat-protection/security-policy-settings/security-policy-settings)** | Microsoft provides a robust set of security settings policies that IT administrators can use to protect Windows devices and other resources in their organization. |
| **[Assigned Access (kiosk mode)](/windows/configuration/kiosk-methods)** | Some desktop devices in an enterprise serve a special purpose. For example, a PC in the lobby that customers use to see your product catalog. Or, a PC displaying visual content as a digital sign. Windows client offers two different locked-down experiences for public or specialized use: A single-app kiosk that runs a single Universal Windows Platform (UWP) app in full screen above the lock screen, or A multi-app kiosk that runs one or more apps from the desktop.<br><br>Kiosk configurations are based on Assigned Access, a feature in Windows that allows an administrator to manage the user's experience by limiting the application entry points exposed to the user. |
@ -19,14 +19,14 @@ ms.topic: include
| Feature name | Description |
|:---|:---|
| **[Microsoft Defender Antivirus](/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows)** | Microsoft Defender Antivirus is a protection solution included in all versions of Windows. From the moment you boot Windows, Microsoft Defender Antivirus continually monitors for malware, viruses, and security threats. Updates are downloaded automatically to help keep your device safe and protect it from threats. Microsoft Defender Antivirus includes real-time, behavior-based, and heuristic antivirus protection.<br><br>The combination of always-on content scanning, file and process behavior monitoring, and other heuristics effectively prevents security threats. Microsoft Defender Antivirus continually scans for malware and threats and also detects and blocks potentially unwanted applications (PUA) which are applications that are deemed to negatively impact your device but are not considered malware. |
| **[Microsoft Defender Antivirus](/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide)** | Microsoft Defender Antivirus is a protection solution included in all versions of Windows. From the moment you boot Windows, Microsoft Defender Antivirus continually monitors for malware, viruses, and security threats. Updates are downloaded automatically to help keep your device safe and protect it from threats. Microsoft Defender Antivirus includes real-time, behavior-based, and heuristic antivirus protection.<br><br>The combination of always-on content scanning, file and process behavior monitoring, and other heuristics effectively prevents security threats. Microsoft Defender Antivirus continually scans for malware and threats and also detects and blocks potentially unwanted applications (PUA) which are applications that are deemed to negatively impact your device but are not considered malware. |
| **[Local Security Authority (LSA) Protection](/windows-server/security/credentials-protection-and-management/configuring-additional-lsa-protection)** | Windows has several critical processes to verify a user's identity. Verification processes include Local Security Authority (LSA), which is responsible for authenticating users and verifying Windows logins. LSA handles tokens and credentials such as passwords that are used for single sign-on to a Microsoft account and Azure services. To help protect these credentials, additional LSA protection only allows loading of trusted, signed code and provides significant protection against Credential theft.<br><br>LSA protection is enabled by default on new, enterprise joined Windows 11 devices with added support for non-UEFI lock and policy management controls via MDM and group policy. |
| **[Attack surface reduction (ASR)](/microsoft-365/security/defender-endpoint/overview-attack-surface-reduction)** | Attack surface reduction (ASR) rules help to prevent software behaviors that are often abused to compromise your device or network. By reducing the number of attack surfaces, you can reduce the overall vulnerability of your organization.<br><br>Administrators can configure specific ASR rules to help block certain behaviors, such as launching executable files and scripts that attempt to download or run files, running obfuscated or otherwise suspicious scripts, performing behaviors that apps don't usually initiate during normal day-to-day work. |
| **[Tamper protection settings for MDE](/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection)** | Tamper protection is a capability in Microsoft Defender for Endpoint that helps protect certain security settings, such as virus and threat protection, from being disabled or changed. During some kinds of cyber attacks, bad actors try to disable security features on devices. Disabling security features provides bad actors with easier access to your data, the ability to install malware, and the ability to exploit your data, identity, and devices. Tamper protection helps guard against these types of activities. |
| **[Controlled folder access](/microsoft-365/security/defender-endpoint/controlled-folders)** | You can protect your valuable information in specific folders by managing app access to specific folders. Only trusted apps can access protected folders, which are specified when controlled folder access is configured. Commonly used folders, such as those used for documents, pictures, downloads, are typically included in the list of controlled folders. Controlled folder access works with a list of trusted apps. Apps that are included in the list of trusted software work as expected. Apps that are not included in the trusted list are prevented from making any changes to files inside protected folders. <br><br>Controlled folder access helps to protect user's valuable data from malicious apps and threats, such as ransomware. |
| **[Exploit protection](/microsoft-365/security/defender-endpoint/exploit-protection)** | Exploit protection automatically applies several exploit mitigation techniques to operating system processes and apps. Exploit protection works best with Microsoft Defender for Endpoint, which gives organizations detailed reporting into exploit protection events and blocks as part of typical alert investigation scenarios. You can enable exploit protection on an individual device, and then use MDM or group policy to distribute the configuration file to multiple devices. When a mitigation is encountered on the device, a notification will be displayed from the Action Center. You can customize the notification with your company details and contact information. You can also enable the rules individually to customize which techniques the feature monitors. |
| **[Attack surface reduction (ASR)](/microsoft-365/security/defender-endpoint/overview-attack-surface-reduction?view=o365-worldwide)** | Attack surface reduction (ASR) rules help to prevent software behaviors that are often abused to compromise your device or network. By reducing the number of attack surfaces, you can reduce the overall vulnerability of your organization.<br><br>Administrators can configure specific ASR rules to help block certain behaviors, such as launching executable files and scripts that attempt to download or run files, running obfuscated or otherwise suspicious scripts, performing behaviors that apps don't usually initiate during normal day-to-day work. |
| **[Tamper protection settings for MDE](/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection?view=o365-worldwide)** | Tamper protection is a capability in Microsoft Defender for Endpoint that helps protect certain security settings, such as virus and threat protection, from being disabled or changed. During some kinds of cyber attacks, bad actors try to disable security features on devices. Disabling security features provides bad actors with easier access to your data, the ability to install malware, and the ability to exploit your data, identity, and devices. Tamper protection helps guard against these types of activities. |
| **[Controlled folder access](/microsoft-365/security/defender-endpoint/controlled-folders?view=o365-worldwide)** | You can protect your valuable information in specific folders by managing app access to specific folders. Only trusted apps can access protected folders, which are specified when controlled folder access is configured. Commonly used folders, such as those used for documents, pictures, downloads, are typically included in the list of controlled folders. Controlled folder access works with a list of trusted apps. Apps that are included in the list of trusted software work as expected. Apps that are not included in the trusted list are prevented from making any changes to files inside protected folders. <br><br>Controlled folder access helps to protect user's valuable data from malicious apps and threats, such as ransomware. |
| **[Exploit protection](/microsoft-365/security/defender-endpoint/exploit-protection?view=o365-worldwide)** | Exploit protection automatically applies several exploit mitigation techniques to operating system processes and apps. Exploit protection works best with Microsoft Defender for Endpoint, which gives organizations detailed reporting into exploit protection events and blocks as part of typical alert investigation scenarios. You can enable exploit protection on an individual device, and then use MDM or group policy to distribute the configuration file to multiple devices. When a mitigation is encountered on the device, a notification will be displayed from the Action Center. You can customize the notification with your company details and contact information. You can also enable the rules individually to customize which techniques the feature monitors. |
| **[Microsoft Defender SmartScreen](/windows/security/operating-system-security/virus-and-threat-protection/microsoft-defender-smartscreen/)** | Microsoft Defender SmartScreen protects against phishing, malware websites and applications, and the downloading of potentially malicious files. For enhanced phishing protection, SmartScreen also alerts people when they are entering their credentials into a potentially risky location. IT can customize which notifications appear via MDM or group policy. The protection runs in audit mode by default, giving IT admins full control to make decisions around policy creation and enforcement. |
| **[Microsoft Defender for Endpoint](/microsoft-365/security/defender-endpoint)** | Microsoft Defender for Endpoint is an enterprise endpoint detection and response solution that helps security teams to detect, investigate, and respond to advanced threats. Organizations can use the rich event data and attack insights Defender for Endpoint provides to investigate incidents. Defender for Endpoint brings together the following elements to provide a more complete picture of security incidents: endpoint behavioral sensors, cloud security analytics, threat intelligence and rich response capabilities. |
| **[Microsoft Defender for Endpoint](/microsoft-365/security/defender-endpoint/?view=o365-worldwide)** | Microsoft Defender for Endpoint is an enterprise endpoint detection and response solution that helps security teams to detect, investigate, and respond to advanced threats. Organizations can use the rich event data and attack insights Defender for Endpoint provides to investigate incidents. Defender for Endpoint brings together the following elements to provide a more complete picture of security incidents: endpoint behavioral sensors, cloud security analytics, threat intelligence and rich response capabilities. |
## Network security