Update overview-of-threat-mitigations-in-windows-10.md

This commit is contained in:
Siddarth Mandalika
2021-10-19 12:03:00 +05:30
parent 6f8bbbb6c5
commit 766fb21d18

View File

@ -59,7 +59,7 @@ Windows 10 mitigations that you can configure are listed in the following two ta
|---|---|
| **Windows Defender SmartScreen**<br> helps prevent<br>malicious applications<br>from being downloaded | Windows Defender SmartScreen can check the reputation of a downloaded application by using a service that Microsoft maintains. The first time a user runs an app that originates from the Internet (even if the user copied it from another PC), SmartScreen checks to see if the app lacks a reputation or is known to be malicious, and responds accordingly.<br><br>**More information**: [Windows Defender SmartScreen](#windows-defender-smartscreen), later in this topic |
| **Credential Guard**<br> helps keep attackers<br>from gaining access through<br>Pass-the-Hash or<br>Pass-the-Ticket attacks | Credential Guard uses virtualization-based security to isolate secrets, such as NTLM password hashes and Kerberos Ticket Granting Tickets, so that only privileged system software can access them.<br>Credential Guard is included in Windows 10 Enterprise and Windows Server 2016.<br><br>**More information**: [Protect derived domain credentials with Credential Guard](/windows/access-protection/credential-guard/credential-guard) |
| **Enterprise certificate pinning**<br> helps prevent <br>man-in-the-middle attacks<br>that leverage PKI | Enterprise certificate pinning enables you to protect your internal domain names from chaining to unwanted certificates or to fraudulently issued certificates. With enterprise certificate pinning, you can "pin" (associate) an X.509 certificate and its public key to its Certification Authority, either root or leaf. <br><br>**More information**: [Enterprise Certificate Pinning](/windows/access-protection/enterprise-certificate-pinning) |
| **Enterprise certificate pinning**<br> helps prevent <br>man-in-the-middle attacks<br>that use PKI | Enterprise certificate pinning enables you to protect your internal domain names from chaining to unwanted certificates or to fraudulently issued certificates. With enterprise certificate pinning, you can "pin" (associate) an X.509 certificate and its public key to its Certification Authority, either root or leaf. <br><br>**More information**: [Enterprise Certificate Pinning](/windows/access-protection/enterprise-certificate-pinning) |
| **Device Guard**<br> helps keep a device<br>from running malware or<br>other untrusted apps | Device Guard includes a Code Integrity policy that you create; an allowlist of trusted apps—the only apps allowed to run in your organization. Device Guard also includes a powerful system mitigation called hypervisor-protected code integrity (HVCI), which uses virtualization-based security (VBS) to protect Windows' kernel-mode code integrity validation process. HVCI has specific hardware requirements, and works with Code Integrity policies to help stop attacks even if they gain access to the kernel.<br>Device Guard is included in Windows 10 Enterprise and Windows Server 2016.<br><br>**More information**: [Introduction to Device Guard](/windows/device-security/device-guard/introduction-to-device-guard-virtualization-based-security-and-code-integrity-policies) |
| **Microsoft Defender Antivirus**,<br>which helps keep devices<br>free of viruses and other<br>malware | Windows 10 includes Microsoft Defender Antivirus, a robust inbox antimalware solution. Microsoft Defender Antivirus has been improved to a considerable extent since it was introduced in Windows 8.<br><br>**More information**: [Microsoft Defender Antivirus](#microsoft-defender-antivirus), later in this topic |
| **Blocking of untrusted fonts**<br> helps prevent fonts<br>from being used in<br>elevation-of-privilege attacks | Block Untrusted Fonts is a setting that allows you to prevent users from loading fonts that are "untrusted" onto your network, which can mitigate elevation-of-privilege attacks associated with the parsing of font files. However, as of Windows 10, version 1703, this mitigation is less important, because font parsing is isolated in an [AppContainer sandbox](/windows/win32/secauthz/appcontainer-isolation) (for a list describing this and other kernel pool protections, see [Kernel pool protections](#kernel-pool-protections), later in this topic).<br><br>**More information**: [Block untrusted fonts in an enterprise](/windows/threat-protection/block-untrusted-fonts-in-enterprise) |
@ -196,7 +196,7 @@ Control Flow Guard (CFG) is a mitigation that does not need configuration within
### SMB hardening improvements for SYSVOL and NETLOGON shares
In Windows 10 and Windows Server 2016, client connections to the Active Directory Domain Services default SYSVOL and NETLOGON shares on domain controllers require Server Message Block (SMB) signing and mutual authentication (such as Kerberos). This reduces the likelihood of man-in-the-middle attacks. If SMB signing and mutual authentication are unavailable, a computer running Windows 10 or Windows Server 2016 won't process domain-based Group Policy and scripts.
In Windows 10 and Windows Server 2016, client connections to the Active Directory Domain Services default SYSVOL and NETLOGON shares on domain controllers require Server Message Block (SMB) signing and mutual authentication (such as Kerberos). This requirement reduces the likelihood of man-in-the-middle attacks. If SMB signing and mutual authentication are unavailable, a computer running Windows 10 or Windows Server 2016 won't process domain-based Group Policy and scripts.
> [!NOTE]
> The registry values for these settings aren't present by default, but the hardening rules still apply until overridden by Group Policy or other registry values. For more information on these security improvements, (also referred to as UNC hardening), see [Microsoft Knowledge Base article 3000483](https://support.microsoft.com/help/3000483/ms15-011-vulnerability-in-group-policy-could-allow-remote-code-execution-february-10,-2015) and [MS15-011 & MS15-014: Hardening Group Policy](https://msrc-blog.microsoft.com/2015/02/10/ms15-011-ms15-014-hardening-group-policy/).
@ -205,7 +205,7 @@ In Windows 10 and Windows Server 2016, client connections to the Active Director
Most security controls are designed to prevent the initial infection point. However, despite all the best preventative controls, malware might eventually find a way to infect the system. So, some protections are built to place limits on malware that gets on the device. Protected Processes creates limits of this type.
With Protected Processes, Windows 10 prevents untrusted processes from interacting or tampering with those that have been specially signed. Protected Processes defines levels of trust for processes. Less trusted processes are prevented from interacting with and therefore attacking more trusted processes. Windows 10 uses Protected Processes more broadly across the operating system, and as in Windows 8.1, implements them in a way that can be used by 3rd party anti-malware vendors, as described in [Protecting Anti-Malware Services](/windows/win32/services/protecting-anti-malware-services-). This helps make the system and antimalware solutions less susceptible to tampering by malware that does manage to get on the system.
With Protected Processes, Windows 10 prevents untrusted processes from interacting or tampering with those processes that have been specially signed. Protected Processes defines levels of trust for processes. Less trusted processes are prevented from interacting with and therefore attacking more trusted processes. Windows 10 uses Protected Processes more broadly across the operating system, and as in Windows 8.1, implements them in a way that can be used by third-party anti-malware vendors, as described in [Protecting Anti-Malware Services](/windows/win32/services/protecting-anti-malware-services-). This helps make the system and antimalware solutions less susceptible to tampering by malware that does manage to get on the system.
### Universal Windows apps protections
@ -223,7 +223,7 @@ Windows 10 has several important improvements to the security of the heap:
- **Heap metadata hardening** for internal data structures that the heap uses, to improve protections against memory corruption.
- **Heap allocation randomization**, that is, the use of randomized locations and sizes for heap memory allocations, which makes it more difficult for an attacker to predict the location of critical memory to overwrite. Specifically, Windows 10 adds a random offset to the address of a newly allocated heap, which makes the allocation much less predictable.
- **Heap allocation randomization**, that is, the use of randomized locations and sizes for heap memory allocations, making it more difficult for an attacker to predict the location of critical memory to overwrite. Specifically, Windows 10 adds a random offset to the address of a newly allocated heap, which makes the allocation much less predictable.
- **Heap guard pages** before and after blocks of memory, which work as trip wires. If an attacker attempts to write past a block of memory (a common technique known as a buffer overflow), the attacker will have to overwrite a guard page. Any attempt to modify a guard page is considered a memory corruption, and Windows 10 responds by instantly terminating the app.
@ -271,7 +271,7 @@ Windows 10 includes an entirely new browser, Microsoft Edge. Microsoft Edge is m
- **Designed as a Universal Windows app.** Microsoft Edge is inherently compartmentalized and runs in an AppContainer that sandboxes the browser from the system, data, and other apps. IE11 on Windows 10 can also take advantage of the same AppContainer technology through Enhanced Protect Mode. However, because IE11 can run ActiveX and BHOs, the browser and sandbox are susceptible to a much broader range of attacks than Microsoft Edge.
- **Simplifies security configuration tasks.** Because Microsoft Edge uses a simplified application structure and a single sandbox configuration, there are fewer required security settings. In addition, Microsoft Edge default settings align with security best practices, which makes it more secure by default.
- **Simplifies security configuration tasks.** Because Microsoft Edge uses a simplified application structure and a single sandbox configuration, there are fewer required security settings. In addition, Microsoft Edge default settings align with security best practices, making it more secure by default.
In addition to Microsoft Edge, Microsoft includes IE11 in Windows 10, primarily for backwards-compatibility with websites and with binary extensions that do not work with Microsoft Edge. It must not be configured as the primary browser but rather as an optional or automatic switchover. We recommend using Microsoft Edge as the primary web browser because it provides compatibility with the modern web and the best possible security.
@ -300,7 +300,7 @@ Some of the protections available in Windows 10 are provided through functions t
## Understanding Windows 10 in relation to the Enhanced Mitigation Experience Toolkit
You might already be familiar with the [Enhanced Mitigation Experience Toolkit (EMET)](https://support.microsoft.com/kb/2458544), which has since 2009 offered various exploit mitigations, and an interface for configuring those mitigations. You can use this section to understand how EMET mitigations relate to those mitigations in Windows 10. Many of EMET's mitigations have been built into Windows 10, some with extra improvements. However, some EMET mitigations carry high performance cost, or appear to be relatively ineffective against modern threats, and therefore have not been brought into Windows 10.
You might already be familiar with the [Enhanced Mitigation Experience Toolkit (EMET)](https://support.microsoft.com/kb/2458544), which has since 2009 offered various exploit mitigations, and an interface for configuring those mitigations. You can use this section to understand how EMET mitigations relate to those mitigations in Windows 10. Many of EMET's mitigations have been built into Windows 10, some with extra improvements. However, some EMET mitigations carry high-performance cost, or appear to be relatively ineffective against modern threats, and therefore have not been brought into Windows 10.
Because many of EMET's mitigations and security mechanisms already exist in Windows 10 and have been improved, particularly the ones assessed to have high effectiveness at mitigating known bypasses, version 5.5*x* has been announced as the final major version release for EMET (see [Enhanced Mitigation Experience Toolkit](https://web.archive.org/web/20170928073955/https://technet.microsoft.com/en-US/security/jj653751)).