added support for built-in sdrs

This commit is contained in:
Francois Isabelle 2005-07-12 12:21:13 +00:00
parent 4d2f9ebdc2
commit 96876bb061
3 changed files with 1723 additions and 1456 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -51,17 +51,16 @@ extern int verbose;
static static
struct ipmi_rs * struct ipmi_rs *
ipmi_sensor_set_sensor_thresholds(struct ipmi_intf * intf, ipmi_sensor_set_sensor_thresholds(struct ipmi_intf *intf,
uint8_t sensor, uint8_t sensor,
uint8_t threshold, uint8_t threshold, uint8_t setting)
uint8_t setting)
{ {
struct ipmi_rq req; struct ipmi_rq req;
static struct sensor_set_thresh_rq set_thresh_rq; static struct sensor_set_thresh_rq set_thresh_rq;
memset(&set_thresh_rq, 0, sizeof(set_thresh_rq)); memset(&set_thresh_rq, 0, sizeof (set_thresh_rq));
set_thresh_rq.sensor_num = sensor; set_thresh_rq.sensor_num = sensor;
set_thresh_rq.set_mask = threshold; set_thresh_rq.set_mask = threshold;
if (threshold == UPPER_NON_RECOV_SPECIFIED) if (threshold == UPPER_NON_RECOV_SPECIFIED)
set_thresh_rq.upper_non_recov = setting; set_thresh_rq.upper_non_recov = setting;
else if (threshold == UPPER_CRIT_SPECIFIED) else if (threshold == UPPER_CRIT_SPECIFIED)
@ -77,37 +76,37 @@ ipmi_sensor_set_sensor_thresholds(struct ipmi_intf * intf,
else else
return NULL; return NULL;
memset(&req, 0, sizeof(req)); memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE; req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = SET_SENSOR_THRESHOLDS; req.msg.cmd = SET_SENSOR_THRESHOLDS;
req.msg.data = (uint8_t *)&set_thresh_rq; req.msg.data = (uint8_t *) & set_thresh_rq;
req.msg.data_len = sizeof(set_thresh_rq); req.msg.data_len = sizeof (set_thresh_rq);
return intf->sendrecv(intf, &req); return intf->sendrecv(intf, &req);
} }
static int static int
ipmi_sensor_print_full_discrete(struct ipmi_intf * intf, ipmi_sensor_print_full_discrete(struct ipmi_intf *intf,
struct sdr_record_full_sensor * sensor) struct sdr_record_full_sensor *sensor)
{ {
char id[17]; char id[17];
char * unitstr = "discrete"; char *unitstr = "discrete";
int validread=1; int validread = 1;
uint8_t val = 0; uint8_t val = 0;
struct ipmi_rs * rsp; struct ipmi_rs *rsp;
if (sensor == NULL) if (sensor == NULL)
return -1; return -1;
memset(id, 0, sizeof(id)); memset(id, 0, sizeof (id));
memcpy(id, sensor->id_string, 16); memcpy(id, sensor->id_string, 16);
/* /*
* Get current reading * Get current reading
*/ */
rsp = ipmi_sdr_get_sensor_reading_ipmb(intf, rsp = ipmi_sdr_get_sensor_reading_ipmb(intf,
sensor->keys.sensor_num, sensor->keys.sensor_num,
sensor->keys.owner_id); sensor->keys.owner_id);
if (rsp == NULL) { if (rsp == NULL) {
lprintf(LOG_ERR, "Error reading sensor %s (#%02x)", lprintf(LOG_ERR, "Error reading sensor %s (#%02x)",
id, sensor->keys.sensor_num); id, sensor->keys.sensor_num);
@ -119,12 +118,9 @@ ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
val = rsp->data[0]; val = rsp->data[0];
} }
if (csv_output) if (csv_output) {
{
/* NOT IMPLEMENTED */ /* NOT IMPLEMENTED */
} } else {
else
{
if (verbose == 0) { if (verbose == 0) {
/* output format /* output format
* id value units status thresholds.... * id value units status thresholds....
@ -133,14 +129,10 @@ ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
if (validread) { if (validread) {
printf("| 0x%-8x | %-10s | 0x%02x%02x", printf("| 0x%-8x | %-10s | 0x%02x%02x",
val, val,
unitstr, unitstr, rsp->data[2], rsp->data[3]);
rsp->data[2],
rsp->data[3]);
} else { } else {
printf("| %-10s | %-10s | %-6s", printf("| %-10s | %-10s | %-6s",
"na", "na", unitstr, "na");
unitstr,
"na");
} }
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s", printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na"); "na", "na", "na", "na", "na", "na");
@ -152,7 +144,8 @@ ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
printf(" Entity ID : %d.%d\n", printf(" Entity ID : %d.%d\n",
sensor->entity.id, sensor->entity.instance); sensor->entity.id, sensor->entity.instance);
printf(" Sensor Type (Discrete): %s\n", printf(" Sensor Type (Discrete): %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type)); ipmi_sdr_get_sensor_type_desc(sensor->sensor.
type));
ipmi_sdr_print_discrete_state("States Asserted", ipmi_sdr_print_discrete_state("States Asserted",
sensor->sensor.type, sensor->sensor.type,
sensor->event_type, sensor->event_type,
@ -166,23 +159,23 @@ ipmi_sensor_print_full_discrete(struct ipmi_intf * intf,
} }
static int static int
ipmi_sensor_print_full_analog(struct ipmi_intf * intf, ipmi_sensor_print_full_analog(struct ipmi_intf *intf,
struct sdr_record_full_sensor * sensor) struct sdr_record_full_sensor *sensor)
{ {
char unitstr[16], id[17]; char unitstr[16], id[17];
int i=0, validread=1, thresh_available = 1; int i = 0, validread = 1, thresh_available = 1;
double val = 0.0; double val = 0.0;
struct ipmi_rs * rsp; struct ipmi_rs *rsp;
char * status = NULL; char *status = NULL;
if (sensor == NULL) if (sensor == NULL)
return -1; return -1;
memset(id, 0, sizeof(id)); memset(id, 0, sizeof (id));
memcpy(id, sensor->id_string, 16); memcpy(id, sensor->id_string, 16);
/* only handle linear and linearized sensors (for now) */ /* only handle linear and linearized sensors (for now) */
if (sensor->linearization>=SDR_SENSOR_L_NONLINEAR) { if (sensor->linearization >= SDR_SENSOR_L_NONLINEAR) {
printf("sensor %s non-linear!\n", id); printf("sensor %s non-linear!\n", id);
return -1; return -1;
} }
@ -202,30 +195,29 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
} else { } else {
/* convert RAW reading into units */ /* convert RAW reading into units */
val = (rsp->data[0] > 0) val = (rsp->data[0] > 0)
? sdr_convert_sensor_reading(sensor, rsp->data[0]) ? sdr_convert_sensor_reading(sensor, rsp->data[0])
: 0; : 0;
status = (char*)ipmi_sdr_get_status(sensor, rsp->data[2]); status = (char *) ipmi_sdr_get_status(sensor, rsp->data[2]);
} }
/* /*
* Figure out units * Figure out units
*/ */
memset(unitstr, 0, sizeof(unitstr)); memset(unitstr, 0, sizeof (unitstr));
switch (sensor->unit.modifier) switch (sensor->unit.modifier) {
{ case 2:
case 2: i += snprintf(unitstr, sizeof (unitstr), "%s * %s",
i += snprintf(unitstr, sizeof(unitstr), "%s * %s",
unit_desc[sensor->unit.type.base], unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]); unit_desc[sensor->unit.type.modifier]);
break; break;
case 1: case 1:
i += snprintf(unitstr, sizeof(unitstr), "%s/%s", i += snprintf(unitstr, sizeof (unitstr), "%s/%s",
unit_desc[sensor->unit.type.base], unit_desc[sensor->unit.type.base],
unit_desc[sensor->unit.type.modifier]); unit_desc[sensor->unit.type.modifier]);
break; break;
case 0: case 0:
default: default:
i += snprintf(unitstr, sizeof(unitstr), "%s", i += snprintf(unitstr, sizeof (unitstr), "%s",
unit_desc[sensor->unit.type.base]); unit_desc[sensor->unit.type.base]);
break; break;
} }
@ -237,14 +229,10 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
if (rsp == NULL) if (rsp == NULL)
thresh_available = 0; thresh_available = 0;
if (csv_output) if (csv_output) {
{
/* NOT IPMLEMENTED */ /* NOT IPMLEMENTED */
} } else {
else if (verbose == 0) {
{
if (verbose == 0)
{
/* output format /* output format
* id value units status thresholds.... * id value units status thresholds....
*/ */
@ -256,43 +244,51 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
printf("| %-10s | %-10s | %-6s", printf("| %-10s | %-10s | %-6s",
"na", unitstr, "na"); "na", unitstr, "na");
} }
if (thresh_available) if (thresh_available) {
{
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED) if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[3])); printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[3]));
else else
printf("| %-10s", "na"); printf("| %-10s", "na");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED) if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[2])); printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[2]));
else else
printf("| %-10s", "na"); printf("| %-10s", "na");
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED) if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[1])); printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[1]));
else else
printf("| %-10s", "na"); printf("| %-10s", "na");
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED) if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[4])); printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[4]));
else else
printf("| %-10s", "na"); printf("| %-10s", "na");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED) if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[5])); printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[5]));
else else
printf("| %-10s", "na"); printf("| %-10s", "na");
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED) if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED)
printf("| %-10.3f", sdr_convert_sensor_reading(sensor, rsp->data[6])); printf("| %-10.3f",
sdr_convert_sensor_reading
(sensor, rsp->data[6]));
else else
printf("| %-10s", "na"); printf("| %-10s", "na");
} } else {
else printf
{ ("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s", "na", "na", "na", "na", "na", "na");
"na", "na", "na", "na", "na", "na");
} }
printf("\n"); printf("\n");
} } else {
else
{
printf("Sensor ID : %s (0x%x)\n", printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num); id, sensor->keys.sensor_num);
@ -300,66 +296,89 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
sensor->entity.id, sensor->entity.instance); sensor->entity.id, sensor->entity.instance);
printf(" Sensor Type (Analog) : %s\n", printf(" Sensor Type (Analog) : %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type)); ipmi_sdr_get_sensor_type_desc(sensor->sensor.
type));
printf(" Sensor Reading : "); printf(" Sensor Reading : ");
if (validread) { if (validread) {
uint16_t raw_tol = __TO_TOL(sensor->mtol); uint16_t raw_tol = __TO_TOL(sensor->mtol);
double tol = sdr_convert_sensor_reading(sensor, raw_tol * 2); double tol =
sdr_convert_sensor_reading(sensor,
raw_tol * 2);
printf("%.*f (+/- %.*f) %s\n", printf("%.*f (+/- %.*f) %s\n",
(val==(int)val) ? 0 : 3, (val == (int) val) ? 0 : 3, val,
val, (tol == (int) tol) ? 0 : 3, tol,
(tol==(int)tol) ? 0 : 3,
tol,
unitstr); unitstr);
printf(" Status : %s\n", status ? : ""); printf(" Status : %s\n",
status ? : "");
if (thresh_available) if (thresh_available) {
{ if (rsp->
if (rsp->data[0] & LOWER_NON_RECOV_SPECIFIED) data[0] & LOWER_NON_RECOV_SPECIFIED)
printf(" Lower Non-Recoverable : %.3f\n", printf
sdr_convert_sensor_reading(sensor, rsp->data[3])); (" Lower Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[3]));
else else
printf(" Lower Non-Recoverable : na\n"); printf
(" Lower Non-Recoverable : na\n");
if (rsp->data[0] & LOWER_CRIT_SPECIFIED) if (rsp->data[0] & LOWER_CRIT_SPECIFIED)
printf(" Lower Critical : %.3f\n", printf
sdr_convert_sensor_reading(sensor, rsp->data[2])); (" Lower Critical : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[2]));
else else
printf(" Lower Critical : na\n"); printf
if (rsp->data[0] & LOWER_NON_CRIT_SPECIFIED) (" Lower Critical : na\n");
printf(" Lower Non-Critical : %.3f\n", if (rsp->
sdr_convert_sensor_reading(sensor, rsp->data[1])); data[0] & LOWER_NON_CRIT_SPECIFIED)
printf
(" Lower Non-Critical : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[1]));
else else
printf(" Lower Non-Critical : na\n"); printf
if (rsp->data[0] & UPPER_NON_CRIT_SPECIFIED) (" Lower Non-Critical : na\n");
printf(" Upper Non-Critical : %.3f\n", if (rsp->
sdr_convert_sensor_reading(sensor, rsp->data[4])); data[0] & UPPER_NON_CRIT_SPECIFIED)
printf
(" Upper Non-Critical : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[4]));
else else
printf(" Upper Non-Critical : na\n"); printf
(" Upper Non-Critical : na\n");
if (rsp->data[0] & UPPER_CRIT_SPECIFIED) if (rsp->data[0] & UPPER_CRIT_SPECIFIED)
printf(" Upper Critical : %.3f\n", printf
sdr_convert_sensor_reading(sensor, rsp->data[5])); (" Upper Critical : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[5]));
else else
printf(" Upper Critical : na\n"); printf
if (rsp->data[0] & UPPER_NON_RECOV_SPECIFIED) (" Upper Critical : na\n");
printf(" Upper Non-Recoverable : %.3f\n", if (rsp->
sdr_convert_sensor_reading(sensor, rsp->data[6])); data[0] & UPPER_NON_RECOV_SPECIFIED)
printf
(" Upper Non-Recoverable : %.3f\n",
sdr_convert_sensor_reading
(sensor, rsp->data[6]));
else else
printf(" Upper Non-Recoverable : na\n"); printf
(" Upper Non-Recoverable : na\n");
} }
} } else {
else
{
printf("Not Present\n"); printf("Not Present\n");
} }
ipmi_sdr_print_sensor_event_status(intf, ipmi_sdr_print_sensor_event_status(intf,
sensor->keys.sensor_num, sensor->keys.
sensor_num,
sensor->sensor.type, sensor->sensor.type,
sensor->event_type, sensor->event_type,
ANALOG_SENSOR); ANALOG_SENSOR);
ipmi_sdr_print_sensor_event_enable(intf, ipmi_sdr_print_sensor_event_enable(intf,
sensor->keys.sensor_num, sensor->keys.
sensor_num,
sensor->sensor.type, sensor->sensor.type,
sensor->event_type, sensor->event_type,
ANALOG_SENSOR); ANALOG_SENSOR);
@ -372,8 +391,8 @@ ipmi_sensor_print_full_analog(struct ipmi_intf * intf,
} }
int int
ipmi_sensor_print_full(struct ipmi_intf * intf, ipmi_sensor_print_full(struct ipmi_intf *intf,
struct sdr_record_full_sensor * sensor) struct sdr_record_full_sensor *sensor)
{ {
if (sensor->unit.analog != 3) if (sensor->unit.analog != 3)
return ipmi_sensor_print_full_analog(intf, sensor); return ipmi_sensor_print_full_analog(intf, sensor);
@ -382,19 +401,19 @@ ipmi_sensor_print_full(struct ipmi_intf * intf,
} }
int int
ipmi_sensor_print_compact(struct ipmi_intf * intf, ipmi_sensor_print_compact(struct ipmi_intf *intf,
struct sdr_record_compact_sensor * sensor) struct sdr_record_compact_sensor *sensor)
{ {
char id[17]; char id[17];
char * unitstr = "discrete"; char *unitstr = "discrete";
int validread = 1; int validread = 1;
uint8_t val = 0; uint8_t val = 0;
struct ipmi_rs * rsp; struct ipmi_rs *rsp;
if (sensor == NULL) if (sensor == NULL)
return -1; return -1;
memset(id, 0, sizeof(id)); memset(id, 0, sizeof (id));
memcpy(id, sensor->id_string, 16); memcpy(id, sensor->id_string, 16);
/* /*
@ -414,14 +433,10 @@ ipmi_sensor_print_compact(struct ipmi_intf * intf,
val = rsp->data[0]; val = rsp->data[0];
} }
if (csv_output) if (csv_output) {
{
/* NOT IMPLEMENTED */ /* NOT IMPLEMENTED */
} } else {
else if (!verbose) {
{
if (!verbose)
{
/* output format /* output format
* id value units status thresholds.... * id value units status thresholds....
*/ */
@ -439,17 +454,19 @@ ipmi_sensor_print_compact(struct ipmi_intf * intf,
printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s", printf("| %-10s| %-10s| %-10s| %-10s| %-10s| %-10s",
"na", "na", "na", "na", "na", "na"); "na", "na", "na", "na", "na", "na");
printf("\n"); printf("\n");
} } else {
else
{
printf("Sensor ID : %s (0x%x)\n", printf("Sensor ID : %s (0x%x)\n",
id, sensor->keys.sensor_num); id, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d\n", printf(" Entity ID : %d.%d\n",
sensor->entity.id, sensor->entity.instance); sensor->entity.id, sensor->entity.instance);
printf(" Sensor Type (Discrete): %s\n", printf(" Sensor Type (Discrete): %s\n",
ipmi_sdr_get_sensor_type_desc(sensor->sensor.type)); ipmi_sdr_get_sensor_type_desc(sensor->sensor.
ipmi_sdr_print_discrete_state("States Asserted", sensor->sensor.type, type));
sensor->event_type, rsp->data[2], rsp->data[3]); ipmi_sdr_print_discrete_state("States Asserted",
sensor->sensor.type,
sensor->event_type,
rsp->data[2],
rsp->data[3]);
printf("\n"); printf("\n");
} }
} }
@ -458,10 +475,10 @@ ipmi_sensor_print_compact(struct ipmi_intf * intf,
} }
static int static int
ipmi_sensor_list(struct ipmi_intf * intf) ipmi_sensor_list(struct ipmi_intf *intf)
{ {
struct sdr_get_rs * header; struct sdr_get_rs *header;
struct ipmi_sdr_iterator * itr; struct ipmi_sdr_iterator *itr;
int rc = 0; int rc = 0;
lprintf(LOG_DEBUG, "Querying SDR for sensor list"); lprintf(LOG_DEBUG, "Querying SDR for sensor list");
@ -472,24 +489,28 @@ ipmi_sensor_list(struct ipmi_intf * intf)
return -1; return -1;
} }
while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL) while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL) {
{
int r = 0; int r = 0;
uint8_t * rec; uint8_t *rec;
rec = ipmi_sdr_get_record(intf, header, itr); rec = ipmi_sdr_get_record(intf, header, itr);
if (rec == NULL) if (rec == NULL) {
lprintf(LOG_DEBUG, "rec == NULL");
continue; continue;
}
switch(header->type) switch (header->type) {
{
case SDR_RECORD_TYPE_FULL_SENSOR: case SDR_RECORD_TYPE_FULL_SENSOR:
r = ipmi_sensor_print_full(intf, r = ipmi_sensor_print_full(intf,
(struct sdr_record_full_sensor *)rec); (struct
sdr_record_full_sensor *)
rec);
break; break;
case SDR_RECORD_TYPE_COMPACT_SENSOR: case SDR_RECORD_TYPE_COMPACT_SENSOR:
r = ipmi_sensor_print_compact(intf, r = ipmi_sensor_print_compact(intf,
(struct sdr_record_compact_sensor *)rec); (struct
sdr_record_compact_sensor
*) rec);
break; break;
} }
free(rec); free(rec);
@ -504,21 +525,20 @@ ipmi_sensor_list(struct ipmi_intf * intf)
} }
static const struct valstr threshold_vals[] = { static const struct valstr threshold_vals[] = {
{ UPPER_NON_RECOV_SPECIFIED, "Upper Non-Recoverable" }, {UPPER_NON_RECOV_SPECIFIED, "Upper Non-Recoverable"},
{ UPPER_CRIT_SPECIFIED, "Upper Critical" }, {UPPER_CRIT_SPECIFIED, "Upper Critical"},
{ UPPER_NON_CRIT_SPECIFIED, "Upper Non-Critical" }, {UPPER_NON_CRIT_SPECIFIED, "Upper Non-Critical"},
{ LOWER_NON_RECOV_SPECIFIED, "Lower Non-Recoverable" }, {LOWER_NON_RECOV_SPECIFIED, "Lower Non-Recoverable"},
{ LOWER_CRIT_SPECIFIED, "Lower Critical" }, {LOWER_CRIT_SPECIFIED, "Lower Critical"},
{ LOWER_NON_CRIT_SPECIFIED, "Lower Non-Critical" }, {LOWER_NON_CRIT_SPECIFIED, "Lower Non-Critical"},
{ 0x00, NULL }, {0x00, NULL},
}; };
static int static int
__ipmi_sensor_set_threshold(struct ipmi_intf * intf, __ipmi_sensor_set_threshold(struct ipmi_intf *intf,
uint8_t num, uint8_t mask, uint8_t setting) uint8_t num, uint8_t mask, uint8_t setting)
{ {
struct ipmi_rs * rsp; struct ipmi_rs *rsp;
rsp = ipmi_sensor_set_sensor_thresholds(intf, num, mask, setting); rsp = ipmi_sensor_set_sensor_thresholds(intf, num, mask, setting);
@ -535,36 +555,44 @@ __ipmi_sensor_set_threshold(struct ipmi_intf * intf,
return 0; return 0;
} }
static int static int
ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv) ipmi_sensor_set_threshold(struct ipmi_intf *intf, int argc, char **argv)
{ {
char * id, * thresh; char *id, *thresh;
uint8_t settingMask = 0; uint8_t settingMask = 0;
double setting1 = 0.0, setting2 = 0.0, setting3 = 0.0; double setting1 = 0.0, setting2 = 0.0, setting3 = 0.0;
int allUpper = 0, allLower = 0; int allUpper = 0, allLower = 0;
int ret = 0; int ret = 0;
struct sdr_record_list * sdr; struct sdr_record_list *sdr;
if (argc < 3 || strncmp(argv[0], "help", 4) == 0) if (argc < 3 || strncmp(argv[0], "help", 4) == 0) {
{
lprintf(LOG_NOTICE, "sensor thresh <id> <threshold> <setting>"); lprintf(LOG_NOTICE, "sensor thresh <id> <threshold> <setting>");
lprintf(LOG_NOTICE, " id : name of the sensor for which threshold is to be set"); lprintf(LOG_NOTICE,
" id : name of the sensor for which threshold is to be set");
lprintf(LOG_NOTICE, " threshold : which threshold to set"); lprintf(LOG_NOTICE, " threshold : which threshold to set");
lprintf(LOG_NOTICE, " unr = upper non-recoverable"); lprintf(LOG_NOTICE,
" unr = upper non-recoverable");
lprintf(LOG_NOTICE, " ucr = upper critical"); lprintf(LOG_NOTICE, " ucr = upper critical");
lprintf(LOG_NOTICE, " unc = upper non-critical"); lprintf(LOG_NOTICE,
lprintf(LOG_NOTICE, " lnc = lower non-critical"); " unc = upper non-critical");
lprintf(LOG_NOTICE,
" lnc = lower non-critical");
lprintf(LOG_NOTICE, " lcr = lower critical"); lprintf(LOG_NOTICE, " lcr = lower critical");
lprintf(LOG_NOTICE, " lnr = lower non-recoverable"); lprintf(LOG_NOTICE,
lprintf(LOG_NOTICE, " setting : the value to set the threshold to"); " lnr = lower non-recoverable");
lprintf(LOG_NOTICE,
" setting : the value to set the threshold to");
lprintf(LOG_NOTICE, ""); lprintf(LOG_NOTICE, "");
lprintf(LOG_NOTICE, "sensor thresh <id> lower <lnr> <lcr> <lnc>"); lprintf(LOG_NOTICE,
lprintf(LOG_NOTICE, " Set all lower thresholds at the same time"); "sensor thresh <id> lower <lnr> <lcr> <lnc>");
lprintf(LOG_NOTICE,
" Set all lower thresholds at the same time");
lprintf(LOG_NOTICE, ""); lprintf(LOG_NOTICE, "");
lprintf(LOG_NOTICE, "sensor thresh <id> upper <unc> <ucr> <unr>"); lprintf(LOG_NOTICE,
lprintf(LOG_NOTICE, " Set all upper thresholds at the same time"); "sensor thresh <id> upper <unc> <ucr> <unr>");
lprintf(LOG_NOTICE,
" Set all upper thresholds at the same time");
lprintf(LOG_NOTICE, ""); lprintf(LOG_NOTICE, "");
return 0; return 0;
} }
@ -574,26 +602,26 @@ ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
if (strncmp(thresh, "upper", 5) == 0) { if (strncmp(thresh, "upper", 5) == 0) {
if (argc < 5) { if (argc < 5) {
lprintf(LOG_ERR, "usage: sensor thresh <id> upper <unc> <ucr> <unr>"); lprintf(LOG_ERR,
"usage: sensor thresh <id> upper <unc> <ucr> <unr>");
return -1; return -1;
} }
allUpper = 1; allUpper = 1;
setting1 = (double)strtod(argv[2], NULL); setting1 = (double) strtod(argv[2], NULL);
setting2 = (double)strtod(argv[3], NULL); setting2 = (double) strtod(argv[3], NULL);
setting3 = (double)strtod(argv[4], NULL); setting3 = (double) strtod(argv[4], NULL);
} } else if (strncmp(thresh, "lower", 5) == 0) {
else if (strncmp(thresh, "lower", 5) == 0) {
if (argc < 5) { if (argc < 5) {
lprintf(LOG_ERR, "usage: sensor thresh <id> lower <unc> <ucr> <unr>"); lprintf(LOG_ERR,
"usage: sensor thresh <id> lower <unc> <ucr> <unr>");
return -1; return -1;
} }
allLower = 1; allLower = 1;
setting1 = (double)strtod(argv[2], NULL); setting1 = (double) strtod(argv[2], NULL);
setting2 = (double)strtod(argv[3], NULL); setting2 = (double) strtod(argv[3], NULL);
setting3 = (double)strtod(argv[4], NULL); setting3 = (double) strtod(argv[4], NULL);
} } else {
else { setting1 = (double) atof(argv[2]);
setting1 = (double)atof(argv[2]);
if (strncmp(thresh, "unr", 3) == 0) if (strncmp(thresh, "unr", 3) == 0)
settingMask = UPPER_NON_RECOV_SPECIFIED; settingMask = UPPER_NON_RECOV_SPECIFIED;
else if (strncmp(thresh, "ucr", 3) == 0) else if (strncmp(thresh, "ucr", 3) == 0)
@ -607,7 +635,9 @@ ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
else if (strncmp(thresh, "lnr", 3) == 0) else if (strncmp(thresh, "lnr", 3) == 0)
settingMask = LOWER_NON_RECOV_SPECIFIED; settingMask = LOWER_NON_RECOV_SPECIFIED;
else { else {
lprintf(LOG_ERR, "Valid threshold '%s' for sensor '%s' not specified!", thresh, id); lprintf(LOG_ERR,
"Valid threshold '%s' for sensor '%s' not specified!",
thresh, id);
return -1; return -1;
} }
} }
@ -632,67 +662,79 @@ ipmi_sensor_set_threshold(struct ipmi_intf * intf, int argc, char ** argv)
sdr->record.full->id_string, sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting1); val2str(settingMask, threshold_vals), setting1);
ret = __ipmi_sensor_set_threshold(intf, ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask, sdr->record.full->keys.
sdr_convert_sensor_value_to_raw(sdr->record.full, setting1)); sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting1));
settingMask = UPPER_CRIT_SPECIFIED; settingMask = UPPER_CRIT_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n", printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string, sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting2); val2str(settingMask, threshold_vals), setting2);
ret = __ipmi_sensor_set_threshold(intf, ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask, sdr->record.full->keys.
sdr_convert_sensor_value_to_raw(sdr->record.full, setting2)); sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting2));
settingMask = UPPER_NON_RECOV_SPECIFIED; settingMask = UPPER_NON_RECOV_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n", printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string, sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting3); val2str(settingMask, threshold_vals), setting3);
ret = __ipmi_sensor_set_threshold(intf, ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask, sdr->record.full->keys.
sdr_convert_sensor_value_to_raw(sdr->record.full, setting3)); sensor_num, settingMask,
} sdr_convert_sensor_value_to_raw
else if (allLower) { (sdr->record.full, setting3));
} else if (allLower) {
settingMask = LOWER_NON_RECOV_SPECIFIED; settingMask = LOWER_NON_RECOV_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n", printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string, sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting1); val2str(settingMask, threshold_vals), setting1);
ret = __ipmi_sensor_set_threshold(intf, ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask, sdr->record.full->keys.
sdr_convert_sensor_value_to_raw(sdr->record.full, setting1)); sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting1));
settingMask = LOWER_CRIT_SPECIFIED; settingMask = LOWER_CRIT_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n", printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string, sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting2); val2str(settingMask, threshold_vals), setting2);
ret = __ipmi_sensor_set_threshold(intf, ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask, sdr->record.full->keys.
sdr_convert_sensor_value_to_raw(sdr->record.full, setting2)); sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting2));
settingMask = LOWER_NON_CRIT_SPECIFIED; settingMask = LOWER_NON_CRIT_SPECIFIED;
printf("Setting sensor \"%s\" %s threshold to %.3f\n", printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string, sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting3); val2str(settingMask, threshold_vals), setting3);
ret = __ipmi_sensor_set_threshold(intf, ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask, sdr->record.full->keys.
sdr_convert_sensor_value_to_raw(sdr->record.full, setting3)); sensor_num, settingMask,
} sdr_convert_sensor_value_to_raw
else { (sdr->record.full, setting3));
} else {
printf("Setting sensor \"%s\" %s threshold to %.3f\n", printf("Setting sensor \"%s\" %s threshold to %.3f\n",
sdr->record.full->id_string, sdr->record.full->id_string,
val2str(settingMask, threshold_vals), setting1); val2str(settingMask, threshold_vals), setting1);
ret = __ipmi_sensor_set_threshold(intf, ret = __ipmi_sensor_set_threshold(intf,
sdr->record.full->keys.sensor_num, settingMask, sdr->record.full->keys.
sdr_convert_sensor_value_to_raw(sdr->record.full, setting1)); sensor_num, settingMask,
sdr_convert_sensor_value_to_raw
(sdr->record.full, setting1));
} }
return ret; return ret;
} }
static int static int
ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv) ipmi_sensor_get(struct ipmi_intf *intf, int argc, char **argv)
{ {
struct sdr_record_list * sdr; struct sdr_record_list *sdr;
int i, v; int i, v;
int rc = 0; int rc = 0;
@ -704,7 +746,7 @@ ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv)
printf("Locating sensor record...\n"); printf("Locating sensor record...\n");
/* lookup by sensor name */ /* lookup by sensor name */
for (i=0; i<argc; i++) { for (i = 0; i < argc; i++) {
int r = 0; int r = 0;
sdr = ipmi_sdr_find_sdr_byid(intf, argv[i]); sdr = ipmi_sdr_find_sdr_byid(intf, argv[i]);
@ -723,16 +765,22 @@ ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv)
r = ipmi_sensor_print_full(intf, sdr->record.full); r = ipmi_sensor_print_full(intf, sdr->record.full);
break; break;
case SDR_RECORD_TYPE_COMPACT_SENSOR: case SDR_RECORD_TYPE_COMPACT_SENSOR:
r = ipmi_sensor_print_compact(intf, sdr->record.compact); r = ipmi_sensor_print_compact(intf,
sdr->record.compact);
break; break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR: case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
r = ipmi_sdr_print_sensor_eventonly(intf, sdr->record.eventonly); r = ipmi_sdr_print_sensor_eventonly(intf,
sdr->record.
eventonly);
break; break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
r = ipmi_sdr_print_sensor_fru_locator(intf, sdr->record.fruloc); r = ipmi_sdr_print_sensor_fru_locator(intf,
sdr->record.
fruloc);
break; break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
r = ipmi_sdr_print_sensor_mc_locator(intf, sdr->record.mcloc); r = ipmi_sdr_print_sensor_mc_locator(intf,
sdr->record.mcloc);
break; break;
} }
verbose = v; verbose = v;
@ -745,28 +793,22 @@ ipmi_sensor_get(struct ipmi_intf * intf, int argc, char ** argv)
} }
int int
ipmi_sensor_main(struct ipmi_intf * intf, int argc, char ** argv) ipmi_sensor_main(struct ipmi_intf *intf, int argc, char **argv)
{ {
int rc = 0; int rc = 0;
if (argc == 0) { if (argc == 0) {
rc = ipmi_sensor_list(intf); rc = ipmi_sensor_list(intf);
} } else if (strncmp(argv[0], "help", 4) == 0) {
else if (strncmp(argv[0], "help", 4) == 0) {
lprintf(LOG_NOTICE, "Sensor Commands: list thresh get"); lprintf(LOG_NOTICE, "Sensor Commands: list thresh get");
} } else if (strncmp(argv[0], "list", 4) == 0) {
else if (strncmp(argv[0], "list", 4) == 0) {
rc = ipmi_sensor_list(intf); rc = ipmi_sensor_list(intf);
} } else if (strncmp(argv[0], "thresh", 5) == 0) {
else if (strncmp(argv[0], "thresh", 5) == 0) { rc = ipmi_sensor_set_threshold(intf, argc - 1, &argv[1]);
rc = ipmi_sensor_set_threshold(intf, argc-1, &argv[1]); } else if (strncmp(argv[0], "get", 3) == 0) {
} rc = ipmi_sensor_get(intf, argc - 1, &argv[1]);
else if (strncmp(argv[0], "get", 3) == 0) { } else {
rc = ipmi_sensor_get(intf, argc-1, &argv[1]); lprintf(LOG_ERR, "Invalid sensor command: %s", argv[0]);
}
else {
lprintf(LOG_ERR, "Invalid sensor command: %s",
argv[0]);
rc = -1; rc = -1;
} }